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Abstract. Fields are sets with properties that allow us to perform arith-
metic within them. Cryptography, literally defined as secret writing, is
used to ensure confidentiality and authentication of information when
transferring over an insecure channel. In this paper, we explore the ap-
plications of finite field arithmetic in cryptography by explaining the Ad-
vanced Encryption Standard (private-key) and Elliptic Curve Cryptog-
raphy (public-key).
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1. Introduction

Performing arithmetic over the real numbers is very common. While we
may have taken it for granted, arithmetic over real numbers follows certain
properties. For instance, adding or multiplying two numbers, regardless of
their order, gives the same result. Sets like the real numbers are examples
of algebraic structures called fields. Fields have two binary operations and
follow certain properties that allow us to perform arithmetic within them.
While fields like the real numbers or rationals all contain infinitely many
elements, there are fields with finitely many elements called finite fields.

On the other hand, cryptography is the idea of securely transferring in-
formation from one party to another over an insecure channel. The general
scheme follows the sender encrypting the message, then sending it through
the channel, and finally, the receiver decrypting the message to recover the
original message. The encryption and decryption relies on a secret key. Based
on the types of keys used, cryptography is divided into two types: private
key cryptography and public key cryptography. In a private or symmetric
key cryptosystem, the sender and the receiver use the same (or very similar)
key for both encryption and decryption. In contrast, different keys are used
for encryption and decryption for public (or asymmetric) key cryptosystem.

Another important ingredient for cryptography is the encryption function
that when given a key, converts the original message to an encrypted text.
One of the ways to construct these encryption functions is to employ arith-
metic over finite fields. In this paper, by laying the foundations for field
theory and cryptography, we look at the application of field arithmetic to
cryptography by explaining the Advanced Encryption Standard (AES) and
Elliptic Curve Digital Signature Algorithm (ECDSA).

As an example for a private key cryptosystem, we cover the Advanced
Encryption Standard (AES) which was approved by the National Institute
of Standards and Technology (NIST) in 2001 [16]. AES is one of the most
popular symmetric key algorithms and has been used in web messaging like
WhatsApp and Facebook Messenger [3], iMessages on iPhones [9], as well as
cloud services like Amazon Web Services (AWS) [1]. The algorithm of AES
relies on arithmetic within the finite field of 28 elements.

For a public key cryptosystem, Elliptic Curve cryptography is discussed.
We will see how elliptic curves over finite fields can be used to define the
Discrete Logarithm Problem and eventually be used to construct a digital
signature scheme, namely the Elliptic Curve Digital Signature Algorithm
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(ECDSA). Digital signatures can be used to ensure authentication between
two parties. ECDSA is also widely used including authentication of com-
mands between AWS Key Management Service [1], signatures for iMessages
in iPhone [9] as well as to verify untraceable payments for digital cash like
Bitcoin [10].

2. Finite Fields

This chapter is intended to provide the mathematical preliminaries nec-
essary to understand the cryptographic applications in latter sections. We
begin this chapter by covering the necessary background in field theory and
polynomials over fields. Then, we will prove some important theorems in-
cluding the Fundamental Theorem of Field Theory and extending it to prove
the existence and uniqueness of finite fields.

2.1. Introduction to Finite Fields. In this section, we will introduce fields
and finite fields as well as cover some examples.

Definition 2.1 (Field). A nonempty set F is a field if it has two binary op-
erations, addition (+) and multiplication (·), satisfying following properties:

(1) (Closure) For a, b ∈ F,
a+ b ∈ F and a · b ∈ F.

(2) (Associativity) For a, b ∈ F,
a+ (b+ c) = (a+ b) + c and a · (b · c) = (a · b) · c.

(3) (Additive Identity) There exists an element 0 ∈ F for every element
a ∈ F such that a+ 0 = a.

(4) (Multiplicative Identity) There exists an element 1 ∈ F for every
element a ∈ F such that a · 1 = a.

(5) (Additive Inverse) For every element a ∈ F, there exists a unique
element −a ∈ F such that a+ (−a) = (−a) + a = 0. The element −a
is called the additive inverse of a.

(6) (Multiplicative Inverse) For every element a ∈ F − {0}, there exists
an element a−1 ∈ F such that a · a−1 = a−1 · a = 1. The element a−1

is called the multiplicative inverse of a.
(7) (Commutativity) For a, b ∈ F,

a+ b = b+ a and a · b = b · a.
(8) (Distributivity) For a, b, c ∈ F,

a · (b+ c) = a · b+ a · c and (a+ b) · c = a · c+ b · c.

Example 2.2. The set of integers Z is not a field because it does not satisfy
property (6). For instance, 7 doesn’t have a multiplicative inverse in Z since
1/7 /∈ Z.
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Example 2.3. Under the ordinary operations of addition and multiplication,
the set of rational numbers Q, the set of real numbers R, and the set of
complex numbers C all form a field. All these fields contain infinitely many
elements.

Example 2.4. Consider another set Z5 = {0, 1, 2, 3, 4} where 0 serves as the
additive identity and 1 as the multiplicative identity. Addition and Multi-
plication are closed, associative, and distributive under modular arithmetic
(mod 5). The additive inverses of Z5 = {0, 1, 2, 3, 4} are {0, 4, 3, 2, 1} ∈ Z5

respectively. The multiplicative inverses of Z5
× = {1, 2, 3, 4} are {1, 3, 2, 4} ∈

Z5
× respectively.

We can be convinced that Z5 above satisfies all field properties and hence,
is a field. In fact, it contains finitely many elements. This makes a good
transition into the core idea of the thesis: finite fields.

Definition 2.5 (Finite Fields; Ch. 3 Sec 2 of [15]). A field with m elements
(m ∈ N) is called a finite field of order m.

We saw Z5 which was a finite field with 5 elements. Below we will look at
a slightly more interesting example of finite field with 4 elements.

Example 2.6. Consider a set of polynomials {0, 1, x, x+1} where two binary
operations (addition and multiplication) are defined as:

+ 0 1 x x+ 1

0 0 1 x x+ 1
1 1 0 x+ 1 x
x x x+ 1 0 1

x+ 1 x+ 1 x 1 0

· 1 x x+ 1

1 1 x x+ 1
x x x+ 1 1

x+ 1 x+ 1 1 x

This is another example of a finite field which is explained in more detail in
Example 2.25.

Definition 2.7 (Characteristic of a Field; Sec 22.1 of [12]). A field F has
characteristic n if n is the smallest positive integer such that for every
nonzero element α in F, we have

α+ α+ · · ·+ α︸ ︷︷ ︸
n times

= 0 or simply, αn = 0

If no such integer exists, then F has characteristic 0.

Example 2.8. The characteristic of the finite field Z5 is 5 because for any
element k ∈ Z5

×, k + k + k + k + k = 5k ≡ 0 (mod 5) and 5 is the smallest
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positive integer to satisfy this criteria. For instance, 1 + 1 + 1 + 1 + 1 =
0 (mod 5).

2.2. Polynomials over Fields. All of us have probably seen polynomials
with real numbers as coefficients. Now that we know that the set of real
numbers is just an example of a field, field properties allow us to extend our
“well-known” polynomials to polynomials over fields.

Definition 2.9 (Polynomials over a field; Sec 17.1 of [12]). Any expression
of the form

f(x) =

n∑
i=0

aix
i = a0 + a1x+ a2x

2 + · · ·+ anx
n,

where ai ∈ F, is called a polynomial over the field F with
indeterminate x. If n is the largest non-negative number for which an ̸= 0,
we say that the degree of f is n. We will denote the set of all the polynomials
in x with coefficients in the field F by F[x].

Example 2.10. Let f(x) = 3x2+3x+5 and g(x) = 4x+3 be two polynomials
over Z7. The degree of f(x) is 2 and of g(x) is 1. Adding f(x) and g(x)
gives us f(x) + g(x) = (3x2 + 3x + 5) + (4x + 3) = 3x2 + 7x + 8 ≡ 3x2 + 1.
Multiplying f(x) and g(x) gives us f(x) · g(x) = (3x2 + 3x+ 5) · (4x+ 3) =
12x3 + 21x2 + 29x+ 15 ≡ 5x3 + x+ 1.

In a similar way, we can define derivatives for our polynomials over fields.
Unlike for polynomials over reals, derivatives for polynomials over fields can-
not be explained using the definition of the limit.

Definition 2.11 (Derivatives; Ch 19 of [7]). Let f(x) = anx
n + an−1x

n−1 +
· · ·+ a0 ∈ F[x]. The derivative of f(x) denoted by f ′(x) is a polynomial

f ′(x) = nanx
n−1 + (n− 1)an−1x

n−2 + · · ·+ a1 ∈ F[x].

Not only we can add and multiply the polynomials over fields but also we
can divide them using the Division Algorithm below.

Theorem 2.12 (Division Algorithm; Sec 17.2 of [12]). Let f(x) and g(x)
be polynomials in F[x], where F is a field and g(x) is a nonzero polynomial.
Then there exist unique polynomials q(x), r(x) ∈ F[x] such that

f(x) = g(x)q(x) + r(x),

where degree(r(x)) < degree(g(x)).

Example 2.13. Let f(x) = 2x2 + x and g(x) = 3x + 1 be two polynomials
over Z5. By long division, noting that addition and multiplication are in Z5,
it can be found that q(x) = 4x+ 4 and r(x) = 1. Therefore, by the division
algorithm,

f(x) = 2x2 + x = (3x+ 1)(4x+ 4) + 1.
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In the Division Algorithm, the polynomial r(x) is called the remainder and
there is usually a faster way of computing r(x) without having to perform
the long division through the Division Algorithm. The Remainder Theorem
below shows us how the remainder can be computed in a special case.

Theorem 2.14 (Remainder Theorem; Thm 16.2 of [7]). Let F be a field,
a ∈ F, and f(x) ∈ F[x]. Then f(a) is the remainder in the division of f(x)
by (x− a).

Now, we will see below what happens when the remainder r(x) is the zero
polynomial.

Theorem 2.15 (Factor Theorem; Thm 16.2 of [7]). Let F be a field, a ∈ F,
and f(x) ∈ F[x]. The element a is a zero of f(x) if and only if (x − a) is a
factor of f(x).

For readers interested in the proof of above theorems, we direct them to
Theorem 16.2 of [7].

Note that the Factor Theorem follows from the Remainder Theorem and
the Division Algorithm. The element a is a zero of the polynomial when
f(a) = 0. By the Remainder Theorem, we know that the remainder is zero,
by the Division Algorithm (x− a) must be a factor of f(x).

From the Division Algorithm, we saw how a large polynomial can be broken
down into different factors if the remainder is 0. Similar to when performing
any arithmetic within the fields, we need to make sure that each of the re-
sulting polynomial lies over the field considered. For instance, in the Division
Algorithm, all polynomials f(x), g(x), q(x), and r(x) were in the same ring
F[x] and particularly, r(x) was zero if we are interested in factorization. We
will now explore when this is not always possible over fields by looking at
irreducible polynomials.

Definition 2.16 (Irreducible polynomials; Sec 17.3 of [12]). A non-constant
polynomial f(x) ∈ F[x] is irreducible over a field F if f(x) cannot be ex-
pressed as a product of two polynomials g(x) and h(x) in F[x], where the
degrees of g(x) and h(x) are both smaller than the degree of f(x).

Example 2.17. The polynomial f(x) = x2+1 is irreducible over R[x] because
we cannot factor f(x) into (x− a1)(x− a2) where a1 and a2 belong to R.

2.3. Fundamental Theorem of Field Theory. In the previous section,
we concluded that not all polynomials can be reduced over a particular field.
Fortunately, there are ways to reduce these irreducible polynomials if we
consider a large enough field. That is the general idea behind the Kronecker’s
Theorem which is also called the Fundamental Theorem of Field Theory. We
will first see what these “large” fields or, more formally, Extension Fields
mean.
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Definition 2.18 (Extension Fields; Ch 19 of [7]). A field E is an
extension field of a field F if F ⊆ E and the operations of F are those
of E restricted to F. Also, F is called a subfield of E.

Example 2.19. R is an extension field of Q and C is an extension field of R.

Example 2.20. When looking at field extensions, one caveat to consider is that
not all subsets of a finite field F are necessarily subfields of F. For instance, in
Example 2.35, we will see that F8 = {0, 1, x, x+1, x2, x2+1, x2+x, x2+x+1}.
In Example 2.25, we will see that F4 = {0, 1, x, x + 1}. We know that F2 =
{0, 1}. Just by looking at sets, we can see that F2 ⊆ F4 ⊆ F8. While F2 is a
subfield of both F4 and F8, F4 is not a subfield of F8. For readers interested
in the details, we refer them to Theorem 21.4 of [7].

In Example 2.20, we saw that both F4 and F8 are extension fields of F2.
This raises another issue: how large of an extension field should we consider
when we are attempting to reduce an irreducible polynomial over a larger
field. The concept of splitting fields addresses this issue.

Definition 2.21 (Splitting Fields; Ch 19 of [7]). Let E be an extension field
of a field F and let f(x) ∈ F[x] with degree of at least 1. We say that f(x)
splits in E if there are elements a ∈ F and a1, a2, . . . , an ∈ E such that

f(x) = a(x− a1)(x− a2) · · · (x− an).

We call E a splitting field for f(x) over F if E = F(a1, a2, . . . , an). That is,
E is the smallest field that contains F and all of the elements a1, . . . , an.

Example 2.22. We will go back to our Example 2.17. The polynomial f(x) =
x2 + 1 in R[x] cannot be reduced over R but can be factored over C as

f(x) = (x− i)(x+ i).

We know that C is the smallest field larger that R that contains i and −i. In
other words, C = R(i,−i). Thus, C is a splitting field for f(x) over R.

Before we go on to proving the Fundamental Theorem of Field Theory, we
need to dive a little deeper into how we can construct a field from polynomials.
We will begin by defining ideals in F[x].

Definition 2.23 (Ideals in polynomials over fields; Ch 17 of [12]). Let F
be a field. A principal ideal in F[x] is an ideal ⟨p(x)⟩ generated by some
polynomial p(x), that is,

⟨p(x)⟩ = {p(x)q(x) | q(x) ∈ F[x]}.

Intuitively, ideal ⟨p(x)⟩ generated by some polynomial p(x) is the set of all
the multiples of p(x) in F[x]. The ideals of irreducible polynomials can be
used to construct fields using following theorem.
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Theorem 2.24 (Constructing fields from ideals; Theorem 17.5 from [7]). Let
F be a field and p(x) be an irreducible polynomial over F. Then F[x]/⟨p(x)⟩
is a field, where

F[x]/⟨p(x)⟩ = {f(x) + ⟨p(x)⟩ | f(x) ∈ F[x]}.

For readers interested in a proof, we refer them to Theorem 17.5 in [7].
Instead, we will focus on an example below.

Example 2.25. The polynomial p(x) = x2 + x + 1 is irreducible in Z2[x].
Therefore, by the above theorem, Z2[x]/⟨x2 + x + 1⟩ must be a field. Note
that Z2[x]/⟨x2 + x+ 1⟩ = {ax+ b+ ⟨x2 + x+ 1⟩ | a, b ∈ Z2}. This field has
four elements {0, 1, x, x+ 1}.
Adding coset representations in F[x]/⟨x2 + x+ 1⟩ results in:

+ 0 1 x x+ 1

0 0 1 x x+ 1
1 1 0 x+ 1 x
x x x+ 1 0 1

x+ 1 x+ 1 x 1 0

Similarly, multiplying the coset representations in F[x]/⟨x2 + x+ 1⟩× results
in:

· 1 x x+ 1

1 1 x x+ 1
x x x+ 1 1

x+ 1 x+ 1 1 x

Note that x and (x + 1) are multiplicative inverses of each other. Our irre-
ducible polynomial is x2 + x + 1 which implies x2 + x = −1 ≡ 1 (mod 2).
Hence, the product x(x + 1) = x2 + x ≡ 1. Likewise, we can verify all
properties of fields listed in Definition 2.1 for F[x]/⟨x2 + x+ 1⟩.

Now, we have the necessary ingredients to prove the Kronecker’s Theorem
(Fundamental Theorem of Field Theory).

Theorem 2.26 (Kronecker’s Theorem; Thm 19.1 of [7]). Let F be a field,
and let f(x) be a non-constant polynomial in F[x]. Then there is an extension
field E of F in which f(x) has a zero.

While the structure of this proof has been taken from Thm 19.1 of [7], the
exposition was enhanced by the author.

Proof. Given a polynomial f(x) ∈ F[x], we first factorize
as f(x) = p1(x)p2(x) · · · pk(x) where all pi(x) are irreducible factors. We
take any one of those irreducible factors, denoted by p(x). By Theorem 2.24,
we know that F[x]/⟨p(x)⟩ is a field, which will be our candidate for the ex-
tension field E. Now, we need to show that p(x) has a zero in F[x]/⟨p(x)⟩.
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We claim that polynomial x+ ⟨p(x)⟩ is a zero of p(x) in this extension field
E = F[x]/⟨p(x)⟩. Let p(x) = anx

n + an−1x
n−1 + · · · + a0, for some ai ∈ F.

Therefore,

p(x+ ⟨p(x)⟩) = an(x+ ⟨p(x)⟩)n + an−1(x+ ⟨p(x)⟩)n−1 + · · ·+ a0

= an(x
n + ⟨p(x)⟩) + an−1(x

n−1 + ⟨p(x)⟩) + · · ·+ a0

= anx
n + an⟨p(x)⟩+ an−1x

n−1 + an−1⟨p(x)⟩+ · · ·+ a0

= anx
n + an−1x

n−1 + · · ·+ a0 + (an + an−1 + · · ·+ a1)⟨p(x)⟩
= anx

n + an−1x
n−1 + · · ·+ a0 + ⟨p(x)⟩

= p(x) + ⟨p(x)⟩
= 0 + ⟨p(x)⟩.

Since p(x) has a zero in F[x]/⟨p(x)⟩ and p(x) was one of the factors of f(x),
f(x) also has a zero in F[x]/⟨p(x)⟩. □

Given any polynomial over a field, Kronecker’s Theorem allows us to con-
struct an extension field where the polynomial is reducible. An example
might help us understand this better.

Example 2.27. Let f(x) = x5 + x2 + 2x+ 2 ∈ Z3[x]. This can be factored as
f(x) = (x2 + 2)(x3 + x+ 1). Both (x2 + 2) and (x3 + x+ 1) are irreducible
over Z3. Let us take (x3 + x+ 1) as our p(x). Our extension field of Z3[x] is
Z3[x]/⟨x3 + x+ 1⟩. Note that this field is in the form of

Z3[x]/⟨x3 + x+ 1⟩ = {ax2 + bx+ c+ ⟨x3 + x+ 1⟩ | a, b, c ∈ Z3}.

The claim is that x + ⟨x3 + x + 1⟩ is a root f(x) within this extension field
Z3[x]/⟨x3 + x+ 1⟩. Let us compute f(x+ ⟨x3 + x+ 1⟩):

f(x+ ⟨x3 + x+ 1⟩)

= (x+ ⟨x3 + x+ 1⟩)5 + (x+ ⟨x3 + x+ 1⟩)2 + 2(x+ ⟨x3 + x+ 1⟩) + 2

= (x5 + ⟨x3 + x+ 1⟩) + (x2 + ⟨x3 + x+ 1⟩) + (2x+ ⟨x3 + x+ 1⟩) + 2

= x5 + x2 + 2x+ 2 + ⟨x3 + x+ 1⟩
= (x2 + 2)(x3 + x+ 1) + ⟨x3 + x+ 1⟩
= 0 + ⟨x3 + x+ 1⟩.

Hence, f(x) has a zero in Z3[x]/⟨x3 + x+ 1⟩.

2.4. Criterion for Unique Zeros. We began our discussion by attempting
to reduce polynomials over fields and used Kronecker’s Theorem in the last
section to prove that it is always possible to construct an extension field where
a polynomial over a field has at least one zero. Note that this extension field
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may not necessarily be the splitting field. For splitting fields, we need to have
every single root of the polynomial to be included in the extension field. In
this section, we will explore when the roots of the polynomial are unique.

Definition 2.28 (Separable polynomials; Ch 22 of [12]). Let F be a field. A
polynomial f(x) ∈ F[x] of degree n is separable if it has n distinct roots in
the splitting field of f(x).

Example 2.29. The polynomial f(x) = x2+1 in R[x] is separable since it has
two (degree of the polynomial) distinct roots i and −i in the splitting fields
C over R.

Theorem 2.30 (Criterion for Unique Zeros; Lemma 22.5 of [12]). Let F be a
field and f(x) ∈ F[x]. Then f(x) is separable if and only if f(x) and f ′(x) are
relatively prime. Recall that relatively prime means that the two polynomials
do not share a common polynomial factor of degree greater than 0.

The structure of this proof was inspired by Lemma 22.5 of [12].

Proof. ⇒: Let f(x) be a separable polynomial of degree n. Then, by Defini-
tion 2.28, f(x) has n distinct roots in the splitting field of f(x) over F[x]. In
this extension field, f(x) can be factored as f(x) = a(x−a1)(x−a2) · · · (x−an)
with ai ̸= aj for i ̸= j. Taking the derivative of f(x) by using the product
rule, we get,

f ′(x) = a(x− a2)(x− a3)(x− a4) · · · (x− ai) · · · (x− an)

+ a(x− a1)(x− a3)(x− a4) · · · (x− ai) · · · (x− an)

+ a(x− a1)(x− a2)(x− a4) · · · (x− ai) · · · (x− an)

+ · · ·
+ a(x− a1)(x− a2) · · · (x− ai−1)(x− ai+1) · · · (x− an)

+ · · ·
+ a(x− a1)(x− a2)(x− a3) · · · (x− ai) · · · (x− an−1).

Given an arbitrary factor (x− ai) in f(x), we can see that (x− ai) appears
on every term of f ′(x) except the ith term. Therefore, it is not a factor of
f ′(x). Hence, f(x) and f ′(x) do not have any common factors.
⇐: We will prove the contrapositive of the other half by showing that if f(x)
is not separable, then f(x) and f ′(x) have a common factor. Since f(x) is
not separable it can be written as f(x) = (x− a)kg(x), where k > 1. Then,

f ′(x) = k(x− a)k−1g(x) + (x− a)kg′(x).

Clearly, (x− a)k−1 is a common factor for f(x) and f ′(x). □
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2.5. Existence and Uniqueness of Finite Fields. Now we will focus our
exposition on finite fields and prove the existence and the uniqueness of finite
fields. We need to first strengthen our Definition 2.7 on the characteristic of
finite fields.

Theorem 2.31 (Prime Characteristic of Fields; Sec 22.1 and Thm 16.19 of
[12]). If F is a finite field, then the characteristic of F is p, where p is prime.

This proof was taken from Thm 16.19 of [12].

Proof. Let the characteristic of F be p. For the nonzero element 1 ∈ F, it
must be the case that p · 1 = 0. Suppose p is not prime, then p = mn for
some m and n such that 1 < m < p and 1 < n < p. Therefore, (mn) · 1 = 0
which implies, (m · 1)(n · 1) = 0. Since F is a field and has no zero divisors,
it must be that either m · 1 = 0 or n · 1 = 0. As 1 is an element in the
field, without loss of generality, m · 1 = 0 and this is a contradiction to our
original assumption that characteristic of F is p since m < p. Hence, p must
be prime. □

The fact that the characteristic of a finite field is always prime allows us
to get a nice relation when we raise the sum or product of the field elements
to the power of p.

Theorem 2.32 (Frobenius endomorphism; Proposition 35 of [5]). Let F be
a field of characteristic p and n ∈ N. Then for any a, b ∈ F,

(a+ b)p
n
= ap

n
+ bp

n
, and (ab)p

n
= ap

n
bp

n
.

The structure of the proof for the base case was inspired from Proposition
35 of [5]. The inductive case was worked out by the author.

Proof. We will proceed by induction for this proof.
Base Case: n = 1

We need to prove that (a + b)p = ap + bp and (ab)p = apbp. The Binomial
Theorem states that,

(a+ b)p = ap +

(
p

1

)
ap−1b+ · · ·+

(
p

k

)
ap−kbk + · · ·+ bp where,(

p

k

)
=

p!

r!(p− k)!
.

Since F is a field, from Theorem 2.31, we know that p is prime. Then, this
translates to, (

p

k

)
=

p!

r!(p− k)!
=

p(p− 1)!

r!(p− k)!
.

Since p is prime, r!(p−k)! cannot cancel p in the numerator and the coefficient

will be p ·
(

(p−1)!
r!(p−k)!

)
. Note that the characteristic of the field is p so all these
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intermediate terms with multiples of p is 0. Hence, (a + b)p = ap + bp. By
properties of fields (Definition 2.1), (ab)p = apbp is trivially true.

Inductive Case: n = k
Suppose this holds for all k where 1 ≤ k ≤ n, we need to prove that the same
is the case for k + 1. So by the induction hypothesis, this relation holds for
all k where 1 ≤ k ≤ n, and

(a+ b)p
k+1

= ((a+ b)p)p
k
= (ap + bp)p

k
= (ap)p

k
+ (bp)p

k
= ap

k+1
+ bp

k+1
.

(ab)p
k+1

= (ab)p
k
(ab)p = (ap

k
bp

k
apbp) = (ap

k
ap)(bp

k
bp) = ap

k+1
bp

k+1
.

Hence,

(a+ b)p
n
= ap

n
+ bp

n
, and (ab)p

n
= ap

n
bp

n
.

□

Remark: Note that while proving the Frobenius endomorphism, we started
with assumption of a field but only used some of the field properties like com-
mutativity. In Theorem 2.33, we will employ this flexibility by using Frobenius
endomorphism to a set that satisfies essential but not all field properties.

Theorem 2.33 (Existence and Uniqueness of Finite Fields; Thm 22.6 of
[12]). For every prime p and every positive integer n, there exists a unique
finite field F with pn elements which is isomorphic to the splitting field of
xp

n − x over Zp.

The structure of the introduction and statements on closure and inverses
were adapted from Thm 22.6 of [12] while the conclusion on uniqueness of
fields was inspired from Thm 21.1 of [7]. The exposition was enhanced by
the author.

Proof. Let F be the splitting field of f(x) = xp
n − x over Zp. Now, the

formal derivative of f(x) is f ′(x) ≡ pnxp
n−1 − 1. Since the coefficient of

xp
n−1 is pn, in Zp, f

′(x) = −1. Therefore, f ′(x) and f(x) do not have any
common factors of deg > 1 so by using Theorem 2.30, f(x) is separable.
That is, it has pn distinct roots in its splitting field F. We will call these
roots α1, α2 · · ·αpn . By Kronecker’s Theorem (Theorem 2.26), we can be
sure that F = Zp[α1, α2 · · ·αpn ].

Under the same binary operators addition (+) and multiplication (·) of
Zp, our extension F satisfies the fundamental field properties like existence
of additive and multiplicative identity, commutativity, associativity, and dis-
tributivity. Below we will be proving other field properties. Given two arbi-
trary roots, say α, and β, we know that 0 = αpn − α, and 0 = βpn − β. This
implies, αpn = α and βpn = β. Now, the following is true:

(1) (Closure) α+ β ∈ F.
α+ β = αpn + βpn = (α+ β)p

n

[From Thm 2.32]
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Thus, f(α+ β) = (α+ β)p
n

− (α+ β) = (α+ β)− (α+ β) = 0.
Hence, (α+ β) is a root of f(x).

(2) (Closure) α · β ∈ F.
α · β = αpn · βpn = (α · β)p

n

[From Thm 2.32]

Thus, f(α · β) = (α · β)p
n

− (α · β) = (α · β)− (α · β) = 0.
Hence, (α · β) is a root of f(x).

(3) Additive inverse −α ∈ F. [Without Loss of Generality]
If p is odd, pn is also odd and thus,
f(−α) = (−α)p

n − (−α) = −αpn + α = −(αpn − α) = 0.
If p = 2,
f(−α) = (−α)2

n − (−α) = α+ α = 0. [Since α ≡ −α (mod 2)]
Either way, −α is a root of f(x).

(4) Multiplicative inverse α−1 ∈ F for α ̸= 0.
Let α−1 = αpn−1. We can see that (α−1)p

n
= (αpn)−1 = α−1.

Thus, f(α−1) = (α−1)p
n − α−1 = α−1 − α−1 = 0.

Hence, α−1 is a root of f(x).

Hence, F is a field and specifically, a splitting field of xp
n − x over Zp. For

uniqueness, let K be any field with order pn. Now, K× is a multiplicative
group with order pn−1. Therefore, any nonzero element α, satisfies αpn−1 =
1. That is, αpn = α or αpn − α = 0. Since any nonzero element α in K is
a zero of f(x) and 0 in K is trivially a zero of f(x), K is a splitting field
of f(x). However, any two splitting fields of f(x) over a field F must be
isomorphic. For readers interested in the details of isomorphism, we direct
them to Corollary to Thm 19.4 in [7] or Corollary 21.36 in [12]. □

Definition 2.34 (Galois Field). The unique finite field with pn elements is
called Galois field and represented by GF(pn) or Fpn .

From Thm 2.31, we know that all finite fields must have prime character-
istic, so Galois fields cover every finite field in algebra. Furthermore, we now
know that finite fields exist and in fact are unique for a given prime p and
n ∈ N.

Example 2.35. The roots of f(x) = x2
3−x over Z2[x] are elements of F8. The

given polynomial is f(x) = x8−x. Just by inspection, we know that 0 and 1
are zeros of the polynomial. Therefore, by Thm 2.15, x and (x− 1) must be
factors of f(x). Note that in Z2, −1 ≡ 1 and thus, (x− 1) ≡ (x+ 1). Using
Thm 2.14 and 2.12, we know that there exists g(x) such that, f(x) = x(x+
1)g(x). By long division, we find that g(x) = (x6+x5+x4+x3+x2+x+1).
Further, g(x) can be factored as (x3 + x2 + 1)(x3 + x+ 1). Altogether,

f(x) = x(x+ 1)(x3 + x2 + 1)(x3 + x+ 1).

Let α be a root of (x3 + x2 + 1) and hence, a root of f(x). Then, by long
division, we can find that α, α2, and α2 + α are the roots of the factor
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(x3+x+1). Using the closure property and some long division, we find that
the roots of f(x) are 0, 1, α, α+ 1, α2, α2 + 1, α2 + α, and α2 + α+ 1. Now
we can consider the following addition table for these roots:

+ 0 1 α α+ 1 α2 α2 + 1 α2 + α α2 + α+ 1

0 0 1 α α+ 1 α2 α2 + 1 α2 + α α2 + α+ 1
1 1 0 α+ 1 α α2 + 1 α2 α2 + α+ 1 α2 + α
α α α+ 1 0 1 α2 + α α2 + α+ 1 α2 α2 + 1

α+ 1 α+ 1 α 1 0 α2 + α+ 1 α2 + α α2 + 1 α2

α2 α2 α2 + 1 α2 + α α2 + α+ 1 0 1 α α+ 1
α2 + 1 α2 + 1 α2 α2 + α+ 1 α2 + α 1 0 α+ 1 α
α2 + α α2 + α α2 + α+ 1 α2 α2 + 1 α α+ 1 0 1

α2 + α+ 1 α2 + α+ 1 α2 + α α2 + 1 α2 α+ 1 α 1 0

Similarly, we can consider the following multiplication table for any of these
roots except 0:

· 1 α α+ 1 α2 α2 + 1 α2 + α α2 + α+ 1

1 1 α α+ 1 α2 α2 + 1 α2 + α α2 + α+ 1
α α α2 α2 + α α2 + 1 α2 + α+ 1 1 α+ 1

α+ 1 α+ 1 α2 + α α2 + 1 1 α α2 + α+ 1 α2

α2 α2 α2 + 1 1 α2 + α+ 1 α+ 1 α α2 + α
α2 + 1 α2 + 1 α2 + α+ 1 α α+ 1 α2 + α α2 1
α2 + α α2 + α 1 α2 + α+ 1 α α2 α+ 1 α2 + 1

α2 + α+ 1 α2 + α+ 1 α+ 1 α2 α2 + α 1 α2 + 1 α

From the above tables, we can convince ourselves that the roots form a

field. In short, the splitting field of f(x) = x2
3 − x over Z2[x] is isomorphic

to
GF(23) ≡ F8 ≡ Z2[x]/⟨x3 + x2 + 1⟩.

3. Cryptography

In this chapter, we will switch gears to learning about cryptography. The
literal translation of the word Cryptography is “secret writing”. It has existed
for thousands of years, making information exchange more secure. Given two
parties who wish to communicate via an insecure channel, the main goal of
cryptography is to make sure that an adversary third party is unable to re-
trieve (or at least comprehend) the information exchanged. In all examples
that follow, we will assume that Alice is trying to securely send message to
Bob while Charlie is a third party trying to steal the information. Cryp-
tography has been around for a while but in the modern world, it is more
specific to communication over the internet between two users.

3.1. Private (or symmetric) key cryptography. Cryptography is classi-
fied into two categories: private, or symmetric, key cryptography and public,
or asymmetric, key cryptography. In symmetric key cryptography, it is as-
sumed that the Alice and Bob possess a common secret key that Charlie does
not have access to. When sending a piece of information, Alice uses the se-
cret key K to encrypt the message. The encrypted message is sent over the
insecure channel to Bob. On the other end, Bob uses the same or in some
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cases, a new key that can be easily derived from the old key, to decrypt
the message. However, even if Charlie is able to retrieve the message from
the communication channel, he is not able to comprehend the message as he
doesn’t possess the key, by our underlying assumption. For message M and
secret key K, if we represent encryption scheme as E(M,K) and decryption
scheme as D(M,K) = E−1(M,K), the following diagram represents the core
idea behind symmetric key cryptography:

M

Alice Charlie

E(M, K) E(M, K)

Bob

M

EncryptionKey K

Transmission (insecure)

DecryptionKey K×No Key

Consider the following simple example of symmetric key cryptography. Let
A be the set of uppercase letters in the English alphabet. Define a mapping
function h(x) from A to Z26 as follows:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Now given a key K ∈ Z×
26 and a letter M ∈ A define an encryption scheme

E(M,K) = h−1((h(M) + K) mod 26) and decryption scheme D(M,K) =
h−1((h(M) − K) mod 26). For simplicity, let us assume that each letter is
encrypted independently.

Suppose Alice and Bob agree on a key K = 13 and Alice wishes to send a
message “MATH”. She will encrypt the message as:

E(“M”,K) = h−1((h(“M”) +K) mod 26)

= h−1(12 + 13) mod 26)

= h−1(25 mod 26)

= h−1(25)

= “Z”.
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Similarly, “A”, “T”, and “H” are encrypted to “N”, “G”, “U” respectively
and the encrypted version of word “MATH” become “ZNGU”. This is then
communicated via the insecure channel. When Bob receives the message, he
decrypts it according to the defined decryption scheme as:

D(“Z”,K) = h−1((h(“Z”)−K) mod 26)

= h−1(25− 13) mod 26)

= h−1(12 mod 26)

= h−1(12)

= “M”.

Likewise, Bob recovers the intended plain-text “MATH”. Even if Charlie
intercepts the message during transmission, he recovers “ZNGU” and is not
able to easily comprehend the message as he lacks the key K = 13. Of course,
he could try all possible values of K and probably figure out the message in
some time. This is why the size of key is important factor in deciding the
strength of the cryptographic algorithm.

Note that the decryption scheme in a cryptography system must be inverse
of the encryption scheme so as to recover the intended plain-text by the
recipient. The general example presented above is known as Caesar cipher
and when K = 13, it is specifically referred to as the ROT13 cipher. Some
other examples of private key cryptography are Data Encryption Standard
(DES) and Advanced Encryption Standard (AES). AES utilizes arithmetic
in a finite field and will be studied in detail in Section 4.

3.2. Public (or asymmetric) key cryptography. While private key cryp-
tography was widely used until the 1970s, as referenced in [10], it posed some
problems such as Bob and Alice needed to exchange the key before exchang-
ing information. Also, as the number of people (n) in the communication
network increases, the number of keys required grows significantly. This can
be illustrated with an example below.

Consider a communication channel with a group of 5 people: A, B, C, D,
and E. Each of them possess a secret key with one another, that is, the keys
are KAB, KAC , . . . , KDE totaling to 10 keys. Now suppose F wants to join
the communication group. F needs to setup five additional keys (marked
with red), one with each of existing parties: KAF , KBF , . . . , KEF . This
brings up the total number of keys to 15. The number of keys required to be
distributed can add up quickly for communication in large groups.
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A

B

C

D

E

F

KAB
KAC

KAD
KAE

KBC

KBD

KBEKCD

KCE

KDE

KAF

KBF

KCF

KDF

KEF

In addition to the key distribution problem, while the information could be
protected, the source of the sender couldn’t be verified. That is, Bob cannot
be confident if the message actually came from Alice or if it was altered
during transmission. The following illustration shows how Bob can receive a
wrong message M ′′ but is unable to verify if Alice actually sent M ′′.

M

Alice Bob

EncryptionKey K

E(M, K)

Charlie

M’
Wrong Message

DecryptionKey K

M”

To address the key distribution problem and the problem of digital signa-
tures, public key cryptography was introduced. In public key cryptography,
there are two types of keys, the public key and the private key. Everyone
has access to the public keys while only the individuals have access to their
private keys. For instance, only Alice possesses her private key KA

−1 and
only Bob possesses his private key KB

−1. Everyone has access to Alice’s
public key KA and Bob’s public KB. The encryption key and decryption
key are not the same and therefore, public key cryptography is also called
asymmetric key cryptography.

Now if Alice wants to send Bob a message M , Alice can encrypt the mes-
sage with Bob’s public key KB. The encrypted message KB(M) is sent over
the communication channel and when received by Bob, he can use his private
key KB

−1 to recover the message as KB
−1(KB(M)) = M . The encrypted
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message cannot be read by Charlie as he doesn’t have Bob’s private key. The
idea is that while everyone can encrypt the message to the sender, only the
recipient can decrypt it. This scheme solves the key distribution problem.
When a new member is added to the communication network, only two keys
(public and private) need to be generated: the private key is distributed to
the individual and the public key is published. This is much more efficient
than private key cryptography where we need a unique set of keys for each
possible combination of communication.

While the above scheme guarantees confidentiality, it still doesn’t guar-
antee authentication. That is, Bob still can’t be sure that the message he
received was from Alice. This is because as Bob’s public key is public, Charlie
or anyone can send a message to Bob pretending to be Alice. Thus, we can
improve the scheme by Alice encrypting the message first by her private key
and then encrypting it again using Bob’s public key. Then Bob can recover
the message by first decrypting using his private key and then decrypting
using Alice’s public key to recover message M . If decrypting using Alice’s
public key gives the intended message, Bob can be sure that the message was
sent by Alice as only she has access to her private key. The illustration below
shows a general example of public key cryptography:

M KA
−1(M)

Charlie

KB(KA
−1(M))

KA
−1(M) KB(KA

−1(M))M

Alice

Bob

Encryption

Private (KA
−1)

Encryption

Public (KB)

Transmission

Decryption

Private (KB
−1)

Decryption

Public (KA)

×
No Key (KB

−1)

Note that the fundamental assumption here is that it is unfeasible to know
private key K−1 when the public key K is known. Public key systems employ
trapdoor one-way functions for encryption. These are functions that are
easy to compute in one direction but whose inverse is infeasible to compute
unless key K is known. For more information on trapdoor functions and
a detailed implementation of public key cryptosystems, Section 2.1 of [10]
can be consulted. Some common examples of public key cryptosystems are
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RSA algorithm ([14]), Diffie-Hellman key exchange ([6]), and Elliptic-curve
cryptography. Elliptic-curve cryptography will be studied in Section 5.

While public-key cryptography is more secure, it is more difficult to im-
plement than private-key cryptosystems. According to [10], if Bob wants to
send Alice a long message, he first uses an asymmetric cryptosystem to send
Alice the key for a symmetric cryptosystem, and then he uses the symmetric
cryptosystem to encrypt his message using best of both worlds.

4. Advanced Encryption Standard (AES)

In this chapter, we will look at a specific example of a popular private key
cryptosystem: the Advanced Encryption Standard (AES). The Advanced
Encryption Standard (AES) is a cryptographic algorithm approved by the
Federal Information Processing Standard (FIPS) to protect electronic data.
It is heavily used in web messaging like WhatsApp and Facebook Messenger
[3], iMessages in iPhone [9] as well as cloud services like Amazon Web Services
(AWS) [1].

It employs a symmetric block cipher to encrypt and decrypt information
using theRijndael algorithm specificed in [4]. AES processes data in blocks
of 128 bits. That is, the input is 128 bits long and the output is also 128
bits long, where each bit is 0 or 1. The algorithm may be used with three
different key lengths of 128 bits, 192 bits, and 256 bits thereby referred as
AES-128, AES-192, and AES-256 respectively [16].

The basic unit of processing in the AES algorithm is called a byte which
is a sequence of eight bits treated as a single entity [16]. The information
to be encrypted in bytes for the AES algorithm will be presented as the
concatenation of its individual bit values (0 or 1) between braces in the order
{b7, b6, b5, b4, b3, b2, b1, b0}. According to [16], these bytes are interpreted as
finite field elements in GF(28) using a polynomial representation:

b7x
7 + b6x

6 + b5x
5 + b4x

4 + b3x
3 + b2x

2 + b1x+ b0 =
7∑

n=0

bix
i.

For example, {10100011} identifies the specific finite field element x7 + x5 +
x+ 1.

Since there are a lot of bits, it is also conventional to represent them in
hexadecimal values as follows:

Bits Hex Bits Hex Bits Hex Bits Hex

0000 0 0100 4 1000 8 1100 c
0001 1 0101 5 1001 9 1101 d
0010 2 0110 6 1010 a 1110 e
0011 3 0111 7 1011 b 1111 f

For example, {10100011} = {1010}{0011} = {a3}.
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The message to be encrypted is first translated to bits using American
Standard Code for Information Interchange (ASCII) and grouped into blocks
of 128 bits. Since each block is 128 bit and 1 byte is 8 bits, there are 16 bytes
to consider in the AES algorithm. These 16 bytes are internally arranged as
two-dimensional array which is called the state and represented by s [16].
The state consists of four rows of bytes. The input is copied into the state
array where encryption operations are carried out and finally copied to the
output array. Corresponding states and output for a 128-bit (16 bytes) input
as {in0, in1, . . . , in15} is given in the table (from [16]) below:

Input bytes State bytes Output bytes
in0 in4 in8 in12

in1 in5 in9 in13

in2 in6 in10 in14

in3 in7 in11 in15

s0,0 s0,1 s0,2 s0,3
s1,0 s1,1 s1,2 s1,3
s2,0 s2,1 s2,2 s2,3
s3,0 s3,1 s3,2 s3,3

out0 out4 out8 out12
out1 out5 out9 out13
out2 out6 out10 out14
out3 out7 out11 out15

More generally, for Nb bytes per row, the input array is copied to the State
array according to following scheme:

s[r, c] = in[r + 4c] for 0 ≤ r < 4 and 0 ≤ c < Nb.

Similarly, after cipher operations are applied, the State array is copied to
the output array as follows:

out[r + 4c] = s[r, c] for 0 ≤ r < 4 and 0 ≤ c < Nb.

Each column in the state array is called aword [16]. In the above example,
there are four columns in the State array and therefore, four words, as follows:

w0 = s0,0s1,0s2,0s3,0

w1 = s0,1s1,1s2,1s3,1

w2 = s0,2s1,2s2,2s3,2

w3 = s0,3s1,3s2,3s3,3

4.1. Binary Operations: Addition and Multiplication. So far we have
defined that every byte is a finite field element in GF(28). Recall that a field
is incomplete without its binary operations. In this section, we will define
the two binary operations: addition and multiplication for the field elements.

4.1.1. Addition. In AES, adding two bytes is achieved by adding two polyno-
mials in GF(28). Recall that adding of two polynomials in GF(28) is regular
addition of the coefficients for corresponding powers expressed in Z2.
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Example 4.1. Suppose we want to add two bytes {10100011} and {01101001}.

{10100011}+ {01101001}
= (x7 + x5 + x+ 1) + (x6 + x5 + x3 + 1)

= (x7 + x6 + x3 + x)

= {11001010}.

Note that this is equivalent to applying an XOR operator which is simply
addition in mod 2. Recall that an XOR operator is defined as:

a b a ⊕ b

0 0 0
0 1 1
1 0 1
1 1 0

If we use XOR in the above example, we get

{10100011} ⊕ {01101001} = {11001010}.

4.1.2. Multiplication. In AES, multiplication of two bytes is achieved by
multiplying two polynomials in GF(28) modulo the irreducible polynomial
m(x) = x8 + x4 + x3 + x + 1 [16]. One way to quickly check that m(x) is
irreducible is by showing that it has no zeros in F2: the elements of F2 are 0
and 1 and clearly m(1) ̸= 0 and m(0) ̸= 0. Expressing in terms of ideals, our
finite field is Z2[x]/⟨x8 + x4 + x3 + x+ 1⟩.

Example 4.2. Suppose we want to multiply bytes {10100011} and {01101001}.

{10100011} · {01101001}
= (x7 + x5 + x+ 1) · (x6 + x5 + x3 + 1)

= (x13 + x12 + x11 + x8 + x4 + x3 + x+ 1).

Now performing long division by x8 + x4 + x3 + x+ 1 gives

(x13 + x12 + x11 + x8 + x4 + x3 + x+ 1) mod (x8 + x4 + x3 + x+ 1)

= (x5 + x4 + x3 + x2 + x).

Hence, the result is

{10100011} · {01101001} = {00111110}.

Unlike addition, there is no simple operation at the byte level that corre-
sponds to this multiplication. However, the multiplication in this finite field
can be simplified into byte level interpretation by considering multiplication
by polynomial x.



22 ANUBHAV SHARMA

Theorem 4.3 (Multiplication by {02}; Section 4.2.1 of [16]). In GF(28) in
AES, multiplication of a polynomial by p(x) = x (or in byte-level {00000010} =
{02})is equivalent to a left shift or a left shift followed by subsequent bitwise
XOR operator with {00011011} = {1b}. More compactly, if the byte is rep-
resented as {b7b6b5b4b3b2b1b0}, multiplication by {00000010} is equivalent to
{b6b5b4b3b2b1b00} ⊕ b7 · {00011011}.

Proof. Given a byte {b7b6b5b4b3b2b1b0}, the equivalent polynomial represen-
tation is b(x) = b7x

7 + b6x
6 + b5x

5 + b4x
4 + b3x

3 + b2x
2 + b1x + b0. Now

multiplication of b(x) by polynomial x is given by

x · b(x)
= x · (b7x7 + b6x

6 + b5x
5 + b4x

4 + b3x
3 + b2x

2 + b1x+ b0) mod

(x8 + x4 + x3 + x+ 1)

= (b7x
8 + b6x

7 + b5x
6 + b4x

5 + b3x
4 + b2x

3 + b1x
2 + b0x) mod

(x8 + x4 + x3 + x+ 1).

Case I: b7 = 0.

x · b(x)
= (b6x

7 + b5x
6 + b4x

5 + b3x
4 + b2x

3 + b1x
2 + b0x) mod

(x8 + x4 + x3 + x+ 1)

= (b6x
7 + b5x

6 + b4x
5 + b3x

4 + b2x
3 + b1x

2 + b0x)

≡ {b6b5b4b3b2b1b00}

This is exactly a left shift of byte {b7b6b5b4b3b2b1b0}.

Case II: b7 = 1.

x · b(x)
= (x8 + b6x

7 + b5x
6 + b4x

5 + b3x
4 + b2x

3 + b1x
2 + b0x) mod

(x8 + x4 + x3 + x+ 1)

= (b6x
7 + b5x

6 + b4x
5 + b3x

4 + b2x
3 + b1x

2 + b0x)+

(x8 mod (x8 + x4 + x3 + x+ 1))

= (b6x
7 + b5x

6 + b4x
5 + b3x

4 + b2x
3 + b1x

2 + b0x) + (x4 + x3 + x+ 1)

≡ {b6b5b4b3b2b1b00} ⊕ {00011011}

This is exactly a left shift of the byte followed by XOR with {00011011}.
Hence, {b7b6b5b4b3b2b1b0}·{00000010} = {b6b5b4b3b2b1b00}⊕b7·{00011011}.

□
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4.2. Polynomials with Word coefficients. In the above section, we showed
how each byte in AES is an element of GF(28). In this section, we will look at
polynomials in GF(28). Recall that each column in the state array is called
a word. That is, a word contains 4 bytes. Now given a word [a0, a1, a2, a3],
define a four-term polynomial where ai ∈ F28 as:

a(x) = a3x
3 + a2x

2 + a1x+ a0

The coefficients ai are themselves finite field elements in F28 .

4.2.1. Addition. Given two words [a0, a1, a2, a3] and [b0, b1, b2, b3], the addi-
tion of words is performed as addition of polynomials in GF(28); that is,
addition of coefficients of the like terms. Since coefficients themselves are
finite field elements, this eventually translates to an XOR operation between
the bytes. Mathematically,

[a0, a1, a2, a3] + [b0, b1, b2, b3]

= (a3x
3 + a2x

2 + a1x+ a0) + (b3x
3 + b2x

2 + b1x+ b0)

= (a3 ⊕ b3)x
3 + (a2 ⊕ b2)x

2 + (a1 ⊕ b1)x+ (a0 ⊕ b0).

4.2.2. Multiplication. The multiplication of two words is performed in a sim-
ilar fashion as multiplication of two polynomials. However, that result is a
polynomial with degree 6 and not a word. Thus, it is reduced to a word
equivalent by taking the product modulo a polynomial m(x) = x4+1 for the
AES algorithm. For more details, we refer the readers to [16].

Theorem 4.4 (Equivalency of mod by x4 + 1; Equation 4.10 of [16]).

xi mod (x4 + 1) = xi mod 4, where i ∈ N.

Proof. We will prove this by induction for i ∈ N. For the base case, we will
consider cases where i = 0, 1, 2, 3, and 4.

x0 mod (x4 + 1) = 1 mod (x4 + 1) = 1 = x0 = x0 mod 4.

x1 mod (x4 + 1) = x mod (x4 + 1) = x = x1 = x1 mod 4.

x2 mod (x4 + 1) = x2 mod (x4 + 1) = x2 = x2 mod 4.

x3 mod (x4 + 1) = x3 mod (x4 + 1) = x3 = x3 mod 4.

x4 mod (x4 + 1) = 1 mod (x4 + 1) = 1 = x0 = x4 mod 4.
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Now for the inductive case where i > 4, we can write i as i = 4k + c where
k ∈ Z and c = i mod 4. In that case,

xi mod (x4 + 1)

= x(4k+c) mod (x4 + 1)

= (x4k · xc) mod (x4 + 1)

= (x4k mod (x4 + 1)) · (xc mod (x4 + 1))

= (x4 mod (x4 + 1))k · (xc mod (x4 + 1))

= 1k · (xc mod (x4 + 1))

= xc mod (x4 + 1).

Since c ∈ {0, 1, 2, 3}, this reduces to the respective base case so the equality
is true regardless. □
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Given two words [a0, a1, a2, a3] and [b0, b1, b2, b3],

[a0, a1, a2, a3] · [b0, b1, b2, b3]
= ((a3x

3 + a2x
2 + a1x+ a0) · (b3x3 + b2x

2 + b1x+ b0)) mod (x4 + 1)

= ((a3 · b3)x6+
((a3 · b2)⊕ (a2 · b3))x5+
((a3 · b1)⊕ (a2 · b2)⊕ (a1 · b3))x4+
((a3 · b0)⊕ (a2 · b1)⊕ (a1 · b2)⊕ (a0 · b3))x3+
((a2 · b0)⊕ (a1 · b1)⊕ (a0 · b2))x2+
((a1 · b0)⊕ (a0 · b1))x+
(a0 · b0))
mod (x4 + 1)

= (a3 · b3)x2+
((a3 · b2)⊕ (a2 · b3))x+
((a3 · b1)⊕ (a2 · b2)⊕ (a1 · b3))+
((a3 · b0)⊕ (a2 · b1)⊕ (a1 · b2)⊕ (a0 · b3))x3+
((a2 · b0)⊕ (a1 · b1)⊕ (a0 · b2))x2+
((a1 · b0)⊕ (a0 · b1))x+
(a0 · b0))

= ((a3 · b0)⊕ (a2 · b1)⊕ (a1 · b2)⊕ (a0 · b3))x3+
((a2 · b0)⊕ (a1 · b1)⊕ (a0 · b2)⊕ (a3 · b3))x2+
((a1 · b0)⊕ (a0 · b1)⊕ (a3 · b2)⊕ (a2 · b3))x+
((a0 · b0)⊕ (a3 · b1)⊕ (a2 · b2)⊕ (a1 · b3))

= [((a3 · b0)⊕ (a2 · b1)⊕ (a1 · b2)⊕ (a0 · b3)),
((a2 · b0)⊕ (a1 · b1)⊕ (a0 · b2)⊕ (a3 · b3)),
((a1 · b0)⊕ (a0 · b1)⊕ (a3 · b2)⊕ (a2 · b3)),
((a0 · b0)⊕ (a3 · b1)⊕ (a2 · b2)⊕ (a1 · b3))].

When a(x) is a fixed polynomial and the resulting product is expressed as
d(x) = d3x

3 + d2x
2 + d1x + d0, the coefficients can be written compactly in

matrix form as: 
d0
d1
d2
d3

 =


a0 a3 a2 a1
a1 a0 a3 a2
a2 a1 a0 a3
a3 a2 a1 a0



b0
b1
b2
b3

 .
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In GF(28), x4 + 1 = (x + 1)4. Therefore, x4 + 1 is not an irreducible
polynomial in GF(28) and multiplication by a fixed four-term polynomial
a(x) is not necessarily invertible [16]. In fact, as specified in Section 2.1.7
in [11], a polynomial a(x) has an inverse if the polynomial (x + 1) does not
divide it. We will see later in Section 4.3.3 that we choose a particular a(x)
that satisfies this condition and is invertible in the ring F28 [x]/⟨x4 + 1⟩.

4.3. Encryption. We have all the prerequisite to now go into the details
of encryption. The 128-bit input is first transformed into the state table
as specified in Section 4. Then the first round key is added to the input
similar to that described in Section 4.3.4. Details on how to generate a round
key will be defined in Section 4.5. After initial addition of the round key,
the encryption algorithm includes four transformations applied for a certain
number of rounds. The number of rounds depends upon the key length as
described in table below from [16]:

AES type Key Length (Nk) Block size (Nb) Rounds (Nr)

AES-128 4 4 10
AES-192 6 4 12
AES-256 8 4 14

Every round is identical and composed of following four transformations,
except the final round where the MixColumns() step is omitted. The follow-
ing flowchart summarizes the encryption process in AES:
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Key (Nk words) Message (128 bits)

Key Schedule (Nb(Nr + 1) words)

Key Expansion

Round Key 0

Round Key i

Round Key Nr

Round Key Selection

AddRoundKey

SubBytes

i = 1

ShiftRows

MixColumns

AddRoundKey

Is i < (Nr − 1) ?
Yes

i = i + 1

SubBytes

No

ShiftRows

AddRoundKey

Encrypted Message (128 bits)
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4.3.1. SubBytes(). The first step in every round is SubBytes() which performs
independent transformation on each byte using finite field arithmetic. It
comprises the following two steps:

(1) Take the multiplicative inverse of the element in the finite field GF(28).
The element {00} is mapped to itself, by definition.

(2) Apply the following affine transformation over GF(2):

bi
′ = bi ⊕ b(i+4) mod 8 ⊕ b(i+5) mod 8 ⊕ b(i+6) mod 8 ⊕ b(i+7) mod 8 ⊕ ci

for 0 ≤ i < 8, where bi is the ith bit of the byte resulting from step
(1) and ci is the ith bit with the value {01100011} = {63}. For byte
{b7b6b5b4b3b2b1b0}, this can be written more compactly in the matrix
form as:

b′0
b′1
b′2
b′3
b′4
b′5
b′6
b′7


=



1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1





b0
b1
b2
b3
b4
b5
b6
b7


+



1
1
0
0
0
1
1
0


.

In cryptography algorithms, involution functions provide symmetry be-
tween encryption and decryption, that is, the function is same as its inverse.
However, the SubBytes() step is not an involution as InvSubBytes() (Section
4.4.1) is not the same as SubBytes().

Example 4.5. Consider transformation of byte {00000001}. The multiplica-
tive inverse is {00000001}. Applying the affine transformation results in

b′0
b′1
b′2
b′3
b′4
b′5
b′6
b′7


=



1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1





1
0
0
0
0
0
0
0


+



1
1
0
0
0
1
1
0


=



1
1
1
1
1
0
0
0


+



1
1
0
0
0
1
1
0


=



0
0
1
1
1
1
1
0


.

The result is {01111100} = {7c}. Hence, after the SubBytes() step, {01}
transforms to {7c}.

Recall that the bytes are elements of finite fields; that is, there are a finite
(28) number of them and every element (except {00}) has a multiplicative
inverse. Therefore, the two transformations described above can be reduced
to a simple substitution represented in S-box Table 1. Going back to the
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y
0 1 2 3 4 5 6 7 8 9 a b c d e f

x

0 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76
1 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0
2 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15
3 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75
4 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84
5 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf
6 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8
7 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2
8 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73
9 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db
a e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79
b e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08
c ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a
d 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e
e e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df
f 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

Table 1. S-box Table: For a byte {xy} in hexadecimal, the
transformed byte after applying SubBytes().

above example {01}, the substituted value can be found in the row with
index 0 and column with index 1 which is {7c}.

4.3.2. ShiftRows(). In this step, every row of the state is cyclically shifted
to the left by the value determined by the row index. In other words, row
0 is not shifted but row 1, 2, and 3 are each shifted by 1, 2, and 3 units
respectively. The table below shows the effect of ShiftRows() on the State
array:

Before Shifting After Shifting
s0,0 s0,1 s0,2 s0,3
s1,0 s1,1 s1,2 s1,3
s2,0 s2,1 s2,2 s2,3
s3,0 s3,1 s3,2 s3,3

s0,0 s0,1 s0,2 s0,3
s1,1 s1,2 s1,3 s1,0
s2,2 s2,3 s2,0 s2,1
s3,3 s3,0 s3,1 s3,2

The ShiftRows() operation is also not an involution.

4.3.3. MixColumns(). After row transformations, the algorithm operates on
columns. As described in Section 4.2, each column of the state is treated as a
four-term polynomial in GF(28). For this step from [16], the word polynomial
is multiplied modulo x4 + 1 with a fixed polynomial a(x) given by:

a(x) = {03}x3 + {01}x2 + {01}x+ {02}.
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Since x4+1 is not irreducible in GF(28), not all ring elements has an inverse.
However, this fixed polynomial a(x) is chosen in a way to be invertible. The
inverse is given in Section 4.4.3. The selection of this fixed polynomial a(x)
was done using the criteria of invertibility, diffusion, and performance. Mul-
tiplication of the polynomial by coefficients like 0 or 1 need no computation.
From Theorem 4.3, multiplication by 2 can be computed and multiplication
by 3 is simply XOR of multiplication by 2 and the operand [11]. For details
on diffusion, we refer the reader to Section 3.4.3 of [11].

Suppose the word is [s0,c, s1,c, s2,c, s3,c] and the result after MixColumns()
is represented by [s′0,c, s

′
1,c, s

′
2,c, s

′
3,c]. As described in Section 4.1.2, this can

be written in matrix form as:
s′0,c
s′1,c
s′2,c
s′3,c

 =


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02



s0,c
s1,c
s2,c
s3,c



=


({02} · s0,c)⊕ ({03} · s1,c)⊕ s2,c ⊕ s3,c
s0,c ⊕ ({02} · s1,c)⊕ ({03} · s2,c)⊕ s3,c
s0,c ⊕ s1,c ⊕ ({02} · s2,c)⊕ ({03} · s3,c)
({03} · s0,c)⊕ s1,c ⊕ s2,c ⊕ ({02} · s3,c)

 .

TheMixColumns() operation is also not an involution especially as we need
to multiply the result with the inverse of fixed polynomial a(x) to invert the
function and a(x) is not identity.

4.3.4. AddRoundKey(). This is the final step for each round. The corre-
sponding round key is added to the State by simple XOR operation. This
can be represented as:

[s′0,c, s
′
1,c, s

′
2,c, s

′
3,c] = [s0,c, s1,c, s2,c, s3,c]⊕ [wround * Nb + c]

for 0 ≤ c < Nb and 0 ≤ round ≤ Nr.
Note that first round key is added at round = 0 even before SubBytes().
AddRoundKey() happens for every round after that. The method to generate
round keys [wround * Nb + c] will be described in Section 4.5.

The AddRoundKey() operation is an involution as the XOR operation is
an involution.

4.4. Decryption. Decryption is the inverse process of encryption, where we
convert the encrypted message back to plaintext. Therefore, the order of
transformations for decryption should be reverse of the encryption transfor-
mations. As given in [4], in decryption the inverse of a round should be given
by:

InvRound ( State , RoundKey) {
AddRoundKey( State , RoundKey ) ;
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InvMixColumns ( State ) ;

InvShiftRows ( State ) ;

InvSubBytes ( State ) ;

}

For the final round, since we omit the MixColumns() step:

InvFinalRound ( State , RoundKey) {
AddRoundKey( State , RoundKey ) ;

InvShiftRows ( State ) ;

InvSubBytes ( State ) ;

}

Note that in decryption, the final round happens first which is then followed
by subsequent general rounds and finally followed by a Round Key Addition.
An example taken from [4], for a two-round variation, the Rijndael algorithm
code looks like:

AddRoundKey( State , ExpandedKey+2∗Nb) ;
InvShiftRows ( State ) ;

InvSubBytes ( State ) ;

AddRoundKey( State , ExpandedKey+Nb) ;

InvMixColumns ( State ) ;

InvShiftRows ( State ) ;

InvSubBytes ( State ) ;

AddRoundKey( State , ExpandedKey ) ;

Since ShiftRows() just transposes the bytes and has no effect on the byte
values, while SubBytes() works on independent bytes [4], ShiftRows() and
SubBytes() commute. This results in following sequence:

AddRoundKey( State , ExpandedKey+2∗Nb) ;
InvSubBytes ( State ) ;

InvShiftRows ( State ) ;

AddRoundKey( State , ExpandedKey+Nb) ;

InvMixColumns ( State ) ;

InvSubBytes ( State ) ;

InvShiftRows ( State ) ;

AddRoundKey( State , ExpandedKey ) ;

Furthermore, the column mixing operations MixColumns() and
InvMixColumns() are linear with respect to the column input, that is
InvMixColumns(State ⊕ RoundKey) = InvMixColumns(State) ⊕
InvMixColumns(RoundKey) [16]. This means that the sequence
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AddRoundKey( State , RoundKey ) ;

InvMixColumns ( State ) ;

can be replaced by:

InvMixColumns ( State ) ;

AddRoundKey( State , InvRoundKey ) ;

Adding this change as well results in the following sequence of transforma-
tions for our two-round inverse cipher [4]:

\\ i n i t i a l key add i t i on

AddRoundKey( State , ExpandedKey+2∗Nb) ;
\\ a gene ra l round

InvSubBytes ( State ) ;

InvShiftRows ( State ) ;

InvMixColumns ( State ) ;

AddRoundKey( State , Inv ExpandedKey+Nb) ;

\\ f i n a l round

InvSubBytes ( State ) ;

InvShiftRows ( State ) ;

AddRoundKey( State , ExpandedKey ) ;

The pseudo-code can be generalized to any number of rounds. Once we apply
InvMixColumns() to all the round keys except the first and the last one,
the decryption follows same structure to that of encryption. The individual
transformations will be explained below.

4.4.1. InvSubBytes(). This is the reverse of the the SubBytes() operation. We
need to apply the inverse of the affine transformation described in Section
4.3.1 and take the multiplicative inverse of the byte in GF(28). Similar to
S-box in Table 1, we can represent this inverse through inverse S-box in Table
2.

4.4.2. InvShiftRows(). As the name suggests, this is the reverse of the
ShiftRows() operation described in Section 4.3.2. Every row of the State is
cyclically shifted by the value determined by the row index. In other words,
row 0 is not shifted but row 1, 2, and 3 are each shifted by 3, 2, and 1 units
respectively. The table below shows the effect of ShiftRows() on the State
array:

Before Shifting After Shifting
s0,0 s0,1 s0,2 s0,3
s1,0 s1,1 s1,2 s1,3
s2,0 s2,1 s2,2 s2,3
s3,0 s3,1 s3,2 s3,3

s0,0 s0,1 s0,2 s0,3
s1,3 s1,0 s1,1 s1,2
s2,2 s2,3 s2,0 s2,1
s3,1 s3,2 s3,3 s3,0
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y
0 1 2 3 4 5 6 7 8 9 a b c d e f

x

0 52 09 6a d5 30 36 a5 38 bf 40 a3 9e 81 f3 d7 fb
1 7c e3 39 82 9b 2f ff 87 34 8e 43 44 c4 de e9 cb
2 54 7b 94 32 a6 c2 23 3d ee 4c 95 0b 42 fa c3 4e
3 08 2e a1 66 28 d9 24 b2 76 5b a2 49 6d 8b d1 25
4 72 f8 f6 64 86 68 98 16 d4 a4 5c cc 5d 65 b6 92
5 6c 70 48 50 fd ed b9 da 5e 15 46 57 a7 8d 9d 84
6 90 d8 ab 00 8c bc d3 0a f7 e4 58 05 b8 b3 45 06
7 d0 2c 1e 8f ca 3f 0f 02 c1 af bd 03 01 13 8a 6b
8 3a 91 11 41 4f 67 dc ea 97 f2 cf ce f0 b4 e6 73
9 96 ac 74 22 e7 ad 35 85 e2 f9 37 e8 1c 75 df 6e
a 47 f1 1a 71 1d 29 c5 89 6f b7 62 0e aa 18 be 1b
b fc 56 3e 4b c6 d2 79 20 9a db c0 fe 78 cd 5a f4
c 1f dd a8 33 88 07 c7 31 b1 12 10 59 27 80 ec 5f
d 60 51 7f a9 19 b5 4a 0d 2d e5 7a 9f 93 c9 9c ef
e a0 e0 3b 4d ae 2a f5 b0 c8 eb bb 3c 83 53 99 61
f 17 2b 04 7e ba 77 d6 26 e1 69 14 63 55 21 0c 7d

Table 2. Inverse S-box Table: For a byte {xy} in hexadeci-
mal, the transformed byte after applying InvSubBytes().

4.4.3. InvMixColumns(). InvMixColumns() reverses the mixing of columns
done by MixColumns(). For this step from [16], the word polynomial is
multiplied modulo x4+1 with the inverse of the polynomial a(x) = {03}x3+
{01}x2 + {01}x+ {02} in Section 4.3.3 given by:

a−1(x) = {0b}x3 + {0d}x2 + {09}x+ {0e}.
Suppose the word is [s0,c, s1,c, s2,c, s3,c] and the result is represented by
[s′0,c, s

′
1,c, s

′
2,c, s

′
3,c]. As described in Section 4.1.2, this can be written in

matrix form as:
s′0,c
s′1,c
s′2,c
s′3,c

 =


0e 0b 0d 09
09 0e 0b 0d
0d 09 0e 0b
0b 0d 09 0e



s0,c
s1,c
s2,c
s3,c



=


({0e} · s0,c)⊕ ({0b} · s1,c)⊕ ({0d} · s2,c)⊕ ({09} · s3,c)
({09} · s0,c)⊕ ({0e} · s1,c)⊕ ({0b} · s2,c)⊕ ({0d} · s3,c)
({0d} · s0,c)⊕ ({09} · s1,c)⊕ ({0e} · s2,c)⊕ ({0b} · s3,c)
({0b} · s0,c)⊕ ({0d} · s1,c)⊕ ({09} · s2,c)⊕ ({0e} · s3,c)

 .

4.4.4. AddRoundKey(). Finally, we need to inverseAddRoundKey(), and since
we are performing arithmetic in GF(28), AddRoundKey() is the inverse of it-
self and this is same as Section 4.3.4.
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4.5. Key Schedule. This section specifies how to derive Round Keys from
the cipher key with the help of the key schedule, which consists of the Key
Expansion and the Round Key selection [4].

Depending upon the type of AES used, the key length could be 128, 192,
or 256 bits, and the the number of rounds in algorithm could be 10, 12, or
14. The input length is 128 bits regardless of the key size. Following our
convention in Section 4.3, we will denote number of words in a key as Nk,
number of words in block (input) as Nb, and number of rounds as Nr.

4.5.1. Key Expansion. The key expansion uses the initial Nk words in the
key to generate a total of Nb(Nr + 1) words. As an example, if we use AES-
128 (10 rounds) for 128-bit (4 words) of input, the key expansion produces
4× (10+1) = 44 words. The first 4 words will be used in the very beginning
and each of 10 rounds will use 4 words, totalling to 44. Each word in the
sequence will be denoted as [wi] with 0 ≤ i < Nb(Nr + 1).

The first Nk words of the expanded key are the same as the cipher key,
but then every following word w[i] is equal to the XOR of the previous word
w[i − 1] and the word Nk positions earlier, w[i − Nk] [16]. For words in
positions that are multiple of Nk, a transformation is applied to w[i − 1]
prior to XOR, followed by an XOR with a round constant Rcon[i] [16]. The
transformation consists of two functions RotWord() and SubWord().

RotWord() simply performs a cyclic permutation to the words by trans-
forming the word [a0, a1, a2, a3] into [a1, a2, a3, a0]. SubWord() applies S-box
(1) to each of the bytes in the word to produce an output word. Rcon[i]
contains the values given by [xi−1, {00}, {00}, {00}] with i starting from 1.
Note that x ∈ GF(28) is byte {02} and the multiplication by x is explained
in Theorem 4.3.

The Key Exapnsion is a bit different for AES-256 (Nk = 8 ). For this case,
if i−4 is a multiple of Nk, then SubWord() is applied to w[i−1] before XOR
[16].

4.5.2. Round Key Selection. After we have the expanded key, the specific
round key for round i is the set of words between w[Nb · i] to w[Nb(i + 1)]
[4]. Figure 1 shows an example of key expansion and round key selection for
Nb = 4 and Nk = 6.

5. Elliptic Curve Cryptography

In this final chapter, we will explore the application of finite field arith-
metic in public key cryptosystems, specifically looking at cryptography via
elliptic curves. Elliptic curve cryptography is one of the popular public key
cryptosystems used mainly in digital signatures, key exchanges, and encryp-
tion. In addition, other public cryptosystems like Diffie-Hellman Key Ex-
change, Elgamal, Massey-Omura, and Digital Signatures all have equivalent
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Figure 1. Key Expansion and Round Key Selection for Nb =
4 and Nk = 6. The function f includes operation consists of
RotWord() and SubWord() (Figure 3.10 of [11]).

analogues using elliptic curves over finite fields. Elliptic curve cryptosystems
are more extensive, faster, and secure. As an example, while regular Diffie-
Hellman Key exchange is limited to two parties, Elliptic Curve Diffie-Hellman
can be extended to key exchange between three parties. Similarly, it has been
found that a key size of 4096 bits for RSA gave the same security as 313 bits
in an elliptic curve system [18].

This chapter will introduce elliptic curves, define the addition of points
within elliptic curves, and construct elliptic curves over finite fields. With
necessary background on elliptic curves over finite fields and the arithmetic
on them, we will also discuss one of the popular applications of elliptic curves
to cryptography: the Elliptic Curve Digital Signature Algorithm (ECDSA).

5.1. Elliptic Curves. This section will focus on the mathematics behind
the elliptic curves.

Definition 5.1 (Elliptic Curves; Section 6.1 of [10]). An elliptic curve E
over the XY-plane is the set of solutions to a Weierstrass equation

E : Y 2 = X3 +AX +B, where X,Y,A,B ∈ R.

together with an extra point O, where the constants A and B must satisfy

4A3 + 27B2 ̸= 0.

The quantity ∆E = 4A3+27B2 is called the discriminant of E and ∆E ̸= 0
is equivalent to the condition that the cubic polynomial X3 + AX + B has
three distinct roots. As per [10], having repeated roots doesn’t work well with
the addition of points on the curve. We will discuss more on the addition of
points in Section 5.1.1.
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Figure 2. Animation showing addition of two points P and
Q to give the sum R′ on an elliptic curve E.
Note: Viewing animation requires Adobe Acrobat Reader.

The point O doesn’t live in the XY-plane but is assumed to live at “infin-
ity” in each vertical line. In fact, we will see that the point O serves as the
additive identity or zero for addition.

Example 5.2. The curve Y 2 = X3 − 6X + 16 is an elliptic curve as 4(−6)3 +
27(16)2 = 6048 ̸= 0. Some points that lie on the curve are (0, 4), (0,−4),
(3, 5), and (3,−5).

5.1.1. Addition on Elliptic curves. We will now see how two points on an
elliptic curve can be “added”. Given two points P and Q on an elliptic curve
E, we draw a line L passing through these points. The third point R where
line L intersects the curve E is reflected over the X-axis to give the sum R′.
That is, P ⊕Q = R′. Note that the same idea extends to adding a point to
itself. As point Q tends to P , the line L becomes tangent to E. Another
point where the tangent intersects the curve is reflected over the X-axis to
give the result. Figure 2 represents the addition of points in an elliptic curve
geometrically.

Throughout this section, we will represent the reflection of the point P on
the X-axis by P ′. Now consider adding P to P ′. By definition of reflection,
the line connecting P and P ′ is parallel to the Y-axis and does not intersect
the curve anywhere else. That is, the sum is O, which serves as the additive
identity in elliptic curve addition. Therefore P and P ′ are additive inverses
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of each other. In short, P ⊕ P ′ = O and we define −P = P ′. In the next
theorem, we will explore some of the properties of addition in elliptic curves.

Theorem 5.3 (Properties of Elliptic Curve Addition; Theorem 6.5 in [10]).
Let E be an elliptic curve. Then the addition law on E has the following
properties:

P ⊕Q = Q⊕ P for all P,Q ∈ E [Commutative]

P ⊕O = O ⊕ P = P for all P ∈ E [Identity]

P ⊕ (−P ) = O for all P ∈ E [Existence of Inverse]

(P ⊕Q)⊕R = P ⊕ (Q⊕R) for all P,Q,R ∈ E [Associative]

While the structure of the proof is taken from Theorem 6.5 in [10], the
exposition has been enhanced by the author.

Proof. Commutativity is straightforward as the line passing through P and
Q is same as the the line passing through Q and P . For the identity, P ⊕O is
geometrically a vertical line connecting O that lies on every vertical line and
P . The third point that this line intersects the curve is P’s reflection on the
X-axis or P ′. We need to reflect this on the X-axis to get the result, which
is P . For the inverses, the same argument applies. The vertical line passing
through a point and its reflection on the X-axis intersects the curve at point
O. Associativity is a bit challenging to prove in a few lines but can be verified
with some algebraic calculations after we derive a formula for elliptic curve
addition. □

Example 5.4. Given the point P = (0, 4) and Q = (3, 5) on the curve Y 2 =
X3 − 6X + 16, we will find P ⊕ Q. First, the equation of the line passing
through P and Q is given by:

y − 4 =
5− 4

3− 0
(x− 0)

y =
1

3
x+ 4

Now substituting this line in the equation of the curve will allow us to find
the third point of intersection.(

1

3
X + 4

)2

= X3 − 6X + 16

or,
1

9
X2 +

8

3
X + 16 = X3 − 6X + 16

or, X3 − 1

9
X2 − 26

3
X = 0

or, X(X − 3)

(
X +

26

9

)
= 0
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The X-coordinate of the third point is −26
9 . Plugging this to the line or the

curve gives us the Y-coordinate.

y =

(
1

3

)(
−26

9

)
+ 4 =

82

27

The third point is R =
(
−26

9 ,
82
27

)
. Finally, the reflection of R in the X-axis

is R′ =
(
−26

9 ,−
82
27

)
. Hence, (0, 4)⊕ (3, 5) =

(
−26

9 ,−
82
27

)
.

This example can be generalized to derive an Elliptic Curve Addition Al-
gorithm to add any two points on the elliptic curve.

Theorem 5.5 (Elliptic Curve Addition Algorithm; Theorem 6.6 in [10]). Let
E : Y 2 = X3 + AX +B be an elliptic curve, and let P1 and P2 be points on
E.

(1) If P1 = O, then P1 + P2 = P2.
(2) Otherwise, if P2 = O, then P1 + P2 = P1.
(3) Otherwise, let P1 = (x1, y1) and P2 = (x2, y2).

(a) If x1 = x2 and y1 = −y2, then P1 + P2 = O.
(b) Otherwise, P1 + P2 = (x3, y3), where

x3 = λ2 − x1 − x2

y3 = λ(x1 − x3)− y1

λ =

{
y2−y1
x2−x1

if P1 ̸= P2
3x1

2+A
2y1

if P1 = P2.

The structure of the proof has been inspired from Theorem 6.6 in [10] with
the concluding discussion on cases added by the author.

Proof. Proofs of statements (1), (2), and (3)(a) are trivial from Theorem 5.3
so we will focus on the proof of (3)(b).

In any case, λ represents the slope of the line joining P1 and P2. In the
case when P1 ̸= P2, the slope is simply given by y2−y1

x2−x1
. When P1 = P2,

this line is tangent to the elliptic curve at point P1. To find the slope of the
tangent, we take the derivative of the curve to find the slope.

Y 2 = X3 +AX +B

dY 2

dX
=

d

dX

(
X3 +AX +B

)
2Y

dY

dX
= 3X2 +A

dY

dX
=

3X2 +A

2Y

Thus, at point P1(x1, y1), the slope of tangent is given by 3x1
2+A

2y1
. Now the

equation of the line is given by y − y1 = λ(x − x1) or y = λ(x − x1) + y1.
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We need to substitute this equation to the equation of the curve to find the
point of intersection.

Y 2 = X3 +AX +B

or, (λ(x− x1) + y1)
2 = x3 +Ax+B

or, λ2(x− x1)
2 + 2λ(x− x1)y1 + y1

2 = x3 +Ax+B

or, x3 − λ2x2 + (A− 2λ(y1 − λx1))x+ (B − (y1 − λx1)
2) = 0.

We know that the X-coordinates of the intersection points are x1, x2, and x3
so the above equation must factor into:

(x− x1)(x− x2)(x− x3) = 0

or, x3 + x2(−x1 − x2 − x3) + x(x1x2 + x2x3 + x1x3)− x1x2x3 = 0.

The corresponding coefficients of polynomials must be equal. Looking at
coefficients of x2 gives us −x1 − x2 − x3 = −λ2. Hence, x3 = λ2 − x1 −
x2. Substituting this into our line gives us the Y-coordinate of the point of
intersection y′3 = λ(x3 − x1) + y1. Finally, reflecting this point on the X-axis
gives us y3 = λ(x1−x3)− y1. Note that the way the algorithm is structured,
the λ cannot be undefined, as the denominator is never 0. If P1 ̸= P2, then
x2 ̸= x1 and thus y2−y1

x2−x1
̸= ∞. If P1 = P2 and y1 = 0, then we would never

reach case (3)(b), as y1 = −y2 = 0 and case (3)(a) would be used to compute
the result as O. □

Example 5.6. We will redo Example 5.4 to verify this algorithm. Our goal is
to add P1(0, 4) and P2(3, 5) on the curve Y 2 = X3 − 6X +16. Recall that A
is −6 and B is 16. Since none of the points are O, we move to case (3) in the
algorithm. Therefore, x1 = 0, y1 = 4, x2 = 3 and y2 = 5. Clearly, x1 ̸= x2 so
we will have to use (3)(b). As P1 ̸= P2, we compute λ by y2−y1

x2−x1
= 5−4

3−0 = 1
3 .

Finally, we calculate x3 and y3 as

x3 = λ2 − x1 − x2 =

(
1

3

)2

− 0− 3 = −26

9
, and

y3 = λ(x1 − x3)− y1 =
1

3

(
0−

(
−26

9

))
− 4 = −82

27
.

As expected, we get the same result obtained in Example 5.4:
P1 + P2 =

(
−26

9 ,−
82
27

)
.

5.2. Elliptic Curves Over Finite Fields. In the previous section, we
looked at elliptic curves over the regular XY-plane where the points were
real numbers. Recall that the set of real numbers is just an example of a
field. In this section, we will extend the idea to elliptic curves over finite
fields.
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Definition 5.7 (Elliptic Curves Over Finite Fields; Section 6.2 of [10]). Let
p ≥ 3 be a prime. An elliptic curve over Fp is an equation of the form
E : Y 2 = X3 +AX +B with A,B ∈ Fp satisfying 4A3 + 27B2 ̸= 0.
The set of points on E with coordinates in Fp is the set

E(Fp) = {(x, y) | x, y ∈ Fp and y2 = x3 +Ax+B} ∪ {O}.

Example 5.8. Let us go back to our previous example of the curve E : Y 2 =
X3 − 6X + 16 and consider it over the field F5. Since A,B ∈ F5, the curve
is Y 2 = X3 − 6X + 16 mod 5 or simply Y 2 = X3 + 4X + 1. Computing the
discriminant gives us 4A3+27B2 = 4(43)+27(12) = 256+27 = 283 = 3 ̸= 0.
Thus, it is a valid elliptic curve for our purpose. We will now find all the
points in this curve. Recall that F5 = {0, 1, 2, 3, 4}. For every x ∈ F5, we
have to find y such that the equation is satisfied.

x x3 + 4x+ 1 = y2 y Points

0 1 1 or 4 (0, 1) and (0, 4)
1 1 1 or 4 (1, 1) and (1, 4)
2 2 - -
3 0 0 (3, 0)
4 1 1 or 4 (4, 1) and (4, 4)

Hence, E(F5) = {(0, 1), (0, 4), (1, 1), (1, 4), (3, 0), (4, 1), (4, 4),O}.
Just as we added points in elliptic curves over the reals, similarly we can

add points in elliptic curves over finite fields. However, a caveat to consider
is that our previous geometric intuition of drawing a line, and reflecting the
point of intersection over X-axis cannot be visualized anymore since we are
no longer in the real XY-plane. Algebraically, the addition is exactly the
same except the fact that all arithmetic happens within the field.

Theorem 5.9 (Elliptic Curve Addition over Finite Fields; Theorem 6.9 from
[10]). Let E be an elliptic curve over Fp and let P and Q be points in E(Fp).

(1) The Elliptic Curve Addition Algorithm (Theorem 5.5) applied to P
and Q yields a point in E(Fp). That point is defined to be the sum
P ⊕Q. Since Theorem 5.5 applied to a general field of characteristic
̸= 2 involves arithmetic within the field, the sum P ⊕ Q is always
defined and unique.

(2) This addition law on E(Fp) satisfies all of the properties listed in
Theorem 5.3. That is, E(Fp) is a finite abelian group under addition.

Instead of a rigorous proof, we will give an intuitive discussion on why this
should sound plausible. The arguments to follow are mostly derived from
Theorem 6.9 from [10]. Recall that the formula in Theorem 5.5 is derived
by substituting the line passing through two points into the elliptic curve
equation and solving its roots. Therefore the resulting point must lie on E
and satisfies (1) though an additional argument might be needed to indicate
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why the cubic polynomial has a double root when P = Q. For (2), we have to
consider Commutativity, Identity, Inverse, and Associativity. Commutativity
is intuitive as the switching (x1, y1) with (x2, y2) has no impact on the result
of the algorithm. Cases (1) and (2) of Theorem 5.5 show existence of identity
and inverse follow from (3)(a). Associativity is tricky to prove but can be
verified by using the addition algorithm formulas.

Example 5.10. We will continue with Example 5.8 where we were looking at
curve Y 2 = X3 + 4X + 1 over F5.
We found that E(F5) = {(0, 1), (0, 4), (1, 1), (1, 4), (3, 0), (4, 1), (4, 4),O}. We
will form an addition table of E(F5) to verify Theorem 5.9.

+ O (0, 1) (0, 4) (1, 1) (1, 4) (3, 0) (4, 1) (4, 4)

O O (0, 1) (0, 4) (1, 1) (1, 4) (3, 0) (4, 1) (4, 4)
(0, 1) (0, 1) (4, 1) O (4, 4) (3, 0) (1, 1) (1, 4) (0, 4)
(0, 4) (0, 4) O (4, 4) (3, 0) (4, 1) (1, 4) (0, 1) (1, 1)
(1, 1) (1, 1) (4, 4) (3, 0) (4, 1) O (0, 1) (0, 4) (1, 4)
(1, 4) (1, 4) (3, 0) (4, 1) O (4, 4) (0, 4) (1, 1) (0, 1)
(3, 0) (3, 0) (1, 1) (1, 4) (0, 1) (0, 4) O (4, 4) (4, 1)
(4, 1) (4, 1) (1, 4) (0, 1) (0, 4) (1, 1) (4, 4) (3, 0) O
(4, 4) (4, 4) (0, 4) (1, 1) (1, 4) (0, 1) (4, 1) O (3, 0)

Clearly, closure exists as all the resulting points lie on the E(F5). Commu-
tativity and Identity is also clear. Every point has an unique inverse: (0, 1)
and (0, 4), (1, 1) and (1, 4), (4, 1) and (4, 4) are inverses of each other. Note
that (3, 0) is its own inverse. Associativity can also be checked by performing
addition, choosing any three points on the curve.

As we saw from Theorem 5.9, E(Fp) is a finite abelian group under ad-
dition. As we will spend a little bit exploring this group, we will begin by
recalling some of the group theory from algebra.

Definition 5.11 (Order of Finite Group; Appendix B of [18]). If G is a finite
group, the order of G is the number of elements in G, denoted by #G.

Example 5.12. Recall that, in Example 5.10 for the curve Y 2 = X3+4X +1
over F5, E(F5) = {(0, 1), (0, 4), (1, 1), (1, 4), (3, 0), (4, 1), (4, 4),O}. Since the
number of elements in E(F5) is 8, #E(F5) = 8.

Now that we have addition, we can define multiplication by an integer in
a similar fashion.

Definition 5.13 (Multiplication by an integer; Section 6.1 of [10]). Given
a point P on an elliptic curve E over finite field Fp and an integer n ∈ Z,
multiplication of P by n is defined as the repeated addition of P to itself n
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times. In other words,

nP = P ⊕ P ⊕ · · · ⊕ P︸ ︷︷ ︸
n times

.

Example 5.14. Continuing with our Example 5.10 for curve Y 2 = X3+4X+1
over F5, below is a table showing multiplication by some integers for point
P = (0, 1).

n P ⊕ P ⊕ · · · ⊕ P (n times) nP

1 (0, 1) 1 · (0, 1) = (0, 1)
2 (0, 1)⊕ (0, 1) 2 · (0, 1) = (4, 1)
3 (0, 1)⊕ (0, 1)⊕ (0, 1) 3 · (0, 1) = (1, 4)
4 (0, 1)⊕ (0, 1)⊕ (0, 1)⊕ (0, 1) 4 · (0, 1) = (3, 0)
5 (0, 1)⊕ (0, 1)⊕ (0, 1)⊕ (0, 1)⊕ (0, 1) 5 · (0, 1) = (1, 1)
6 (0, 1)⊕ (0, 1)⊕ (0, 1)⊕ (0, 1)⊕ (0, 1)⊕ (0, 1) 6 · (0, 1) = (4, 4)
7 (0, 1)⊕ (0, 1)⊕ (0, 1)⊕ (0, 1)⊕ (0, 1)⊕ (0, 1)⊕ (0, 1) 7 · (0, 1) = (0, 4)
8 (0, 1)⊕ (0, 1)⊕ (0, 1)⊕ (0, 1)⊕ (0, 1)⊕ (0, 1)⊕ (0, 1)⊕ (0, 1) 8 · (0, 1) = O

Again, we recall some concepts such as order of points and Lagrange’s
Theorem from group theory below.

Definition 5.15 (Order of Points; Section 4.3.3 of [18], Section 6.8.1 of [10]).
Let P ∈ E(Fp). The order of P , denoted by |P | is the smallest positive
integer k such that kP = O. Furthermore, if |P | = #E(Fp), P is said to be
generator of E(Fq). We denote the set of points of order k by

E[k] = {P ∈ E : kP = O}.
Theorem 5.16 (Corollary from Lagrange’s Theorem; Theorem B.1 of [18]).
Let G be a finite group and g ∈ G. Then, the order of g divides the order of
G.

For readers interested in the proof, we direct them to Theorem B.1 of [18].

Example 5.17. From Example 5.14, since 8 · (0, 1) = O and 8 is the smallest
integer to satisfy the property, the order of point P = (0, 1) in E(F5) is 8.
The table below shows the order of points in

E(F5) = {(0, 1), (0, 4), (1, 1), (1, 4), (3, 0), (4, 1), (4, 4),O}.
Point O (0, 1) (0, 4) (1, 1) (1, 4) (3, 0) (4, 1) (4, 4)
Order 1 8 8 8 8 2 4 4

The possible order of points are 1, 2, 4, and 8 all of which divide #E(F5) = 8
thereby verifying Lagrange’s Theorem. Since the order of points (0, 1), (0, 4),
(1, 1) and (1, 4) are 8 which is equal to #E(F5), they are generators of E(F5).

There is an important connection between the group formed by points in
an elliptic curve over a finite field and groups Zn that we are familiar with,
as described by the following theorem.
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Theorem 5.18 (Isomorphism of Group formed by points in Elliptic Curve;
Theorem 4.1 of [18]). Let E be an elliptic curve over the finite field Fp. Then

E(Fp) ∼= Zn or Zn1 ⊕ Zn2

for some integer n ≥ 1, or for some integers n1, n2 ≥ 1 with n1 dividing n2.

The proof is beyond the scope of the thesis and we will redirect the inter-
ested readers to Theorem 4.1 of [18]. Instead, we will work with an example
below.

Example 5.19. Let us attempt to find a group isomorphism for the previous
example E(F5). We know that #E(F5) = 8, so the possible isomorphism
according to Theorem 5.18 can be Z8 or Z2 ⊕ Z4. The maximum order that
an element in group Z2 ⊕ Z4 can have is 4. However, in E(F5), we have 4
elements of order 8. Therefore, E(F5) ∼= Z8.

We saw that E(F5) has 8 elements and is isomorphic to Z8. The number
of elements in the group formed by points in an elliptic curve might seem
random; remember the way we found all the points was by taking points in
F5 × F5 which satisfied the elliptic curve equation. Given a prime p, one
might be curious about how many possible points there can be on the elliptic
curve. It turns out that it depends upon the prime p. Hasse’s Theorem shows
us how.

Theorem 5.20 (Hasse’s Theorem; Theorem 6.11 of [10]). Let E be an elliptic
curve over Fp. Then

#E(Fp) = p+ 1− tp with tp ∈ Z satisfying |tp| ≤ 2
√
p.

The proof of this theorem can be found in Section 4.2 of [18]. Note that
the quantity tp = p+1−#E(Fp) has a special name and is called the trace
of Frobenius for E/Fp. The details can be found in Section 4.2 of [18].

Hasse’s Theorem allows us to form a bound for #E(Fp). That is,

#E(Fp) = p+ 1− tp with tp satisfying |tp| ≤ 2
√
p,

or tp = p+ 1−#E(Fp) with tp satisfying |tp| ≤ 2
√
p,

or |p+ 1−#E(Fp)| ≤ 2
√
p.

Either, p+ 1−#E(Fp) ≤ 2
√
p or − p− 1 + #E(Fp) ≤ 2

√
p

Hence, − 2
√
p+ p+ 1 ≤ #E(Fp) ≤ 2

√
p+ p+ 1.

Suppose we know that the order of an element Q ∈ E(Fp) is k. By La-
garange’s Theorem (Theorem 5.16), we know that the order of E(Fp) must
be a multiple of k. By using bounds of Hasse’s Theorem, we can at least
shortlist the possible orders of the group. However, note that Hasse’s Theo-
rem doesn’t give an algorithm for exactly determining an order. Of course,
we could use our naive approach like in Example 5.8 where we compute pos-
sible Y-coordinates for all possible X-coordinates in the curve. However, as
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we employ larger fields, this becomes very inefficient. Algorithms like Baby
Step, Giant Step (Section 4.3.4 of [18]) can speed this calculation to around

4p
1
4 steps. Even better, Schoof’s Algorithm (Section 4.5 of [18]) can compute

#E(Fp) in (log p)8 bit operations.

Example 5.21. Let us verify that Hasse’s Theorem is true for our previous
example. We were working with curve Y 2 = X3+4X+1 over F5. Our p = 5 so
the bounds of #E(Fp) are −2

√
5+5+1 ≤ #E(F5) ≤ 2

√
5+5+1. Simplifying

gives us 1 ≤ #E(F5) ≤ 10. We found in Example 5.12 that #E(F5) = 8
which satisfies the bounds. Also, we know that #E(Fp) = p + 1 − tp. As
#E(Fp) = 8 and p = 5, we can infer that the trace of Frobenius t5 = −2.

We noted that we could use elementary methods or Baby Step, Giant Step
or Schoof’s Algorithm to compute the order of the the group formed by an
elliptic curve over a finite field Fp. However, sometimes we may want to know
the order of elliptic curves over larger finite fields Fpn for some n. Once we
have found #E(Fp), the procedure of finding #E(Fpn) becomes simple using
the following theorem.

Theorem 5.22 (Determining Group Order for Large Fields; Theorem 4.12
of [18]). Let E be an elliptic curve over Fpn and #E(Fp) = p+1− tp. Write
X2 − tpX + p = (X − α)(X − β) where α, β ∈ C. Then,

#E(Fpn) = pn + 1− (αn + βn)

for all n ≥ 1.

As the mathematics behind the proof is beyond the scope the thesis, we
omit the proof which can be found in Theorem 4.12 of [18]. One interesting
observation is that (αn+βn) must be an integer as any group order is always
a natural number. Since α and β are roots in C, this is not trivial. For
details, kindly refer to Lemma 4.13 of [18].

Example 5.23. We will expand Example 5.21 to compute the group order of
points in Y 2 = X3 + 4X + 1 over F52 . Our p = 5, n = 2, and we calculated
in Example 5.21 that t5 = −2. Thus, our polynomial is X2 + 2X + 5. We
can factorize it to find α = (−1− 2i) and β = (−1 + 2i). Finally,

#E(F52) = 52 + 1− ((−1− 2i)2 + (−1 + 2i)2) = 32.

5.2.1. Elliptic Curves Over F2k . Note that in Section 5.2 we defined elliptic
curves over Fp for p ≥ 3. In this section, we will explore elliptic curves over
F2 and more generally F2k . Since computers use binary, elliptic curves over
F2k tend to be very efficient in encryption and decryption of information.

In Section 5.2, we looked at a simplified version of an elliptic curve and
noted that the discriminant was given by ∆E = 4A3 + 27B2. In fact, the
correct discriminant for the elliptic curve described before is ∆E = −16(4A3+
27B2). Since we did not consider F2, just using ∆E = 4A3 + 27B2 sufficed
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our need when we attempted to check for singularity. However, to extend
the idea to F2 and beyond, we will work with general elliptic curves defined
below.

Definition 5.24 (Generalized Elliptic Curve; Section 6.7 of [10]). An ellip-
tic curve E over the real XY-plane is the set of solutions to a generalized
Weierstrass equation

E : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6,

together with an extra point O. The coefficients a1, . . . , a6 ∈ R are required
to satisfy ∆ ̸= 0, where the discriminant ∆ is defined in terms of certain
quantities b2, b4, b6, b8 as follows:

b2 = a21 + 4a2

b4 = 2a4 + a1a3

b6 = a23 + 4a6

b8 = a21a6 + 4a2a6 − a1a3a4 + a2a3
2 − a4

2

∆ = −b2
2b8 − 8b4

3 − 27b6
2 + 9b2b4b6.

The geometric definition of the addition law on E is similar to our previous
definition except that the old reflection step (x, y) → (x,−y) is replaced
by a slightly more complicated step (x, y) → (x,−y − a1x − a3) [10]. The
addition algorithm is also slightly more complicated but the proof has a
similar structure.

Theorem 5.25 (General Elliptic Curve Addition Algorithm; Exercise 6.22
of [10]). Let E be an elliptic curve over Fpn given by a generalized Weierstrass
equation

E : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6.

Let P1 and P2 be points on E. The sum P1 + P2 is given by:

(1) If P1 = O, then P1 ⊕ P2 = P2.
(2) Otherwise, if P2 = O, then P1 + P2 = P1.
(3) Otherwise, let P1 = (x1, y1) and P2 = (x2, y2).

(a) If x1 = x2 and y1 + y2 + a1x2 + a3 = 0, then P1 + P2 = O.
(b) Otherwise, P1 + P2 = (x3, y3) where,

x3 = λ2 + a1λ− a2 − x1 − x2

y3 = −(λ+ a1)x3 − ν − a3

λ =

{
y2−y1
x2−x1

if x1 ̸= x2
3x1

2+2a2x1+a4−a1y1
2y1+a1x1+a3

if x1 = x2

ν =

{
y1x2−y2x1

x2−x1
if x1 ̸= x2

−x1
3+a4x1+2a6−a3y1
2y1+a1x1+a3

if x1 = x2.
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The proof is skipped here but should follow similar structure as the proof
of Theorem 5.5. This generalized algorithm can be used for addition of points
in elliptic curve over any finite fields.

5.3. Elliptic Curve Digital Signature Algorithm (ECDSA). In this
section, we will cover the Elliptic Curve Digital Signature Algorithm (ECDSA)
in detail by first providing necessary background and finally concluding with
an example used in verifying digital transactions.

5.3.1. Discrete Logarithm Problem. The heart of the ECDSA is the Elliptic
Curve Discrete Logarithm Problem (ECDLP) which is known to be a very
hard problem (see Section 2.6 of [10]). To understand it fully, let us first look
at Euler’s Totient function.

Definition 5.26 (Euler’s totient function; Section 6.3 of [12]). Euler’s totient
function is the map ϕ : N → N defined by ϕ(1) = 1 and for n > 1, ϕ(n) is
defined as

ϕ(n) = #{1 ≤ a < n | gcd(a, n) = 1}.

To put it into words, given a natural number m, ϕ(m) is the total number
of integers less than m that are coprime to m.

Example 5.27. Consider m = 15. The set of numbers that are less than 15
and are co-prime to 15 is {1, 2, 4, 7, 8, 11, 13, 14}. Hence, ϕ(15) = 8.

Corollary 5.28 (Euler’s totient function for primes). For a prime p,

ϕ(p) = p− 1.

This should be intuitive from the definition of prime numbers. Prime
numbers can only be divided without a remainder by 1 and itself. Therefore,
all numbers less than p must be in the set resulting in ϕ(p) = p− 1.

Example 5.29. For instance, let us work with p = 7. Our set is {1, 2, 3, 4, 5, 6}
and ϕ(7) = 6.

Now, we will use the Euler’s totient function to state Euler’s Theorem
which is one of the fundamental results in modular arithmetic.

Theorem 5.30 (Euler’s Theorem; Theorem 6.19 of [12]). Let a and n be
integers such that n > 0 and gcd(a, n) = 1. Then,

aϕ(n) ≡ 1 (mod n).

For proof, refer to Theorem 6.19 from [12]. Here, we will verify with an
example.

Example 5.31. Let us pick a = 2 and n = 15. We have gcd(2, 15) = 1. In
Example 5.27, we saw that ϕ(15) = 8. Now, 28 = 256 ≡ 1 (mod 15). Note
that a8 ≡ 1 (mod 15) is true for any a satisfying gcd(a, 15) = 1.
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From Euler’s Theorem, while we can be certain that for n > 0 and
gcd(a, n) = 1, there exists ϕ(n) that satisfies aϕ(n) ≡ 1, it is not guaran-
teed that ϕ(n) is the smallest positive integer that satisfies this equation.
This motivates a stronger version of the Euler’s Theorem using Carmichael
Function.

Definition 5.32 (Carmichael Function; Section 2 of [15]). Let n = p1
e1p2

e2

· · · prer be the prime factorization of n ∈ Z and let ϕ(pe) be the Euler’s
Totient Function, the carmichael function λ(n) is defined as:

λ(n) = lcm(λ(p1
e1), λ((p2

e2), · · · , λ(prer)),

λ(pe) =

{
1
2ϕ(2

e) for p = 2 and e > 2,

ϕ(pe) for p odd prime or p = 2 and e = 1 or 2.

Example 5.33. Let us attempt to compute λ(15). We need to first find the
prime factorization of 15 which is 15 = 3 · 5. Now, λ(15) = lcm(λ(3), λ(5)).

λ(3) = ϕ(3) = 2.

λ(5) = ϕ(5) = 4.

Finally,

λ(15) = lcm(λ(3), λ(5)) = lcm(2, 4) = 4.

Theorem 5.34 (Euler’s Theorem using Carmichael Function; Section 2 of
[15]). Let a and n be integers such that n > 0 and gcd(a, n) = 1. Then,

aλ(n) ≡ 1 (mod n).

Furthermore, λ(n) is the smallest positive integer that satisfies the above
equation for every a.

For more details on the theorem, we refer readers to Section 2 of [15]. We
will try to strengthen the claim made in Example 5.31.

Example 5.35. In Example 5.31, we had a = 2 and n = 15. In Example 5.33,
we saw that λ(15) = 4. Now, 24 = 16 ≡ 1 (mod 15). In fact, note that
a4 ≡ 1 (mod 15) is true for any a satisfying gcd(a, 15) = 1.

In the discrete logarithm problem, we will consider the special case where
n is a prime p. As λ(p) is the smallest such integer that aλ(p) ≡ 1 (mod p),
we know from Definition 5.15 that a is the generator of the group formed
by the nonzero element of Fp. Therefore, for an integer b ̸≡ 0 (mod p) there

must exist an integer k such that ak ≡ b (mod p). As we know that such
an integer a can exist, we can cover the classical discrete logarithm problem.
More formally, such an integer a is also called a primitive root of prime p
and is discussed in detail in Section 1.5 of [10]. Specifically, for the readers
interested in a more formal approach, we refer them to Theorem 1.30 of [10].
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Definition 5.36 (The Classical Discrete Logarithm Problem; Chapter 5 of
[18]). Let p be a prime and let a, b be integers that are nonzero mod p.
Suppose we know that there exists an integer k such that

ak ≡ b (mod p).

The classical discrete logarithm problem is to find k.

Example 5.37. Consider p = 7. From Example 5.29, we know ϕ(7) = 6. It
should not be difficult to see that ϕ(p) = λ(p) for any prime p and thus
λ(7) = 6. We know there exists an element a satisfying gcd(a, 7) = 1 for
which 6 is smallest integer such a6 ≡ 1 (mod 7). For p = 7, such an a is 3.
Let us pick b = 5. Now there must exist k such that 3k ≡ 5 (mod 7). By
trial and error or techniques like the collision algorithm (see Section 2.7 of
[10]), we can find that k = 5.

Let us take a moment to think about approaches to solve the discrete
logarithm problem (DLP). The brute force method would be to multiply a
to itself until we get the point b. For prime p, |Fp

×| = p − 1. Thus in the
worst case, we would have to multiply a to itself p − 1 number of times.
In terms of Big O notation, the complexity is O(p) but for large values of
p, this still takes a significant amount of time. There are other algorithms
that are a bit faster; for example, the index calculus method solves DLP in

O(ec
√
log p log log p). The details on the index calculus method can be found in

Section 3.8 of [10].
We will now extend discrete logarithms to elliptic curves, which is known

to be even harder.

Definition 5.38 (The Elliptic Curve Discrete Logarithm Problem; Section
6.3 of [10]). Let E be an elliptic curve over the finite field Fp and let P be
a generator and Q be any point in E(Fp). The Elliptic Curve Discrete
Logarithm Problem (ECDLP) is the problem of finding an integer n such
that Q = nP . The integer n is also denoted as n = logP (Q) and called the
elliptic discrete logarithm of Q with respect to P .

As referenced in Section 6.3.2 in [10], the fastest known algorithm to solve
ECDLP in E(Fp) takes approximately

√
p steps. However, it is also important

to note that there are some elliptic curves and primes for which the ECDLP
is relatively easy. More details can be found in Section 6.9.1 of [10].

5.3.2. Elliptic Curve Digital Signature Algorithm. As previously stated in
Section 3.2, one of the reasons public key cryptosystems were introduced
was to solve the problem of digital signatures. Digital Signatures enable
us to verify that the message came from the right sender and solves the
problem of authentication. The Elliptic Curve Digital Signature Algorithm
is one of the widely used asymmetric cryptosystems. Some examples include
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authentication of commands between AWS Key Management Service [1] and
signatures for iMessages in iPhone [9].

This algorithm is taken from Section 6.6 from [18]. We consider our anal-
ogy from Section 3.2 where Alice wants to sign a document m and send it to
Bob.

To specify an Elliptic Curve Digital Signature Algorithm, Alice does the
following:

(1) She first chooses an elliptic curve E and a prime p to construct an
elliptic curve over a finite field Fp. The group order can be written
as #E(Fp) = fr where r is a large prime number and f is an small
integer called cofactor (usually kept as 1, 2, or 4 to make the algorithm
efficient). While there is a lot of flexibility in terms of choosing E,
and p, specifications that can break down #E(Fp) into a large prime
are generally better for a more secure system. Recall that there are
some curves and primes for which ECDSA can be easy, so it pays off
to do some careful analysis of this step before proceeding further.

(2) Then, she chooses a base point G = (xG, yG) in E(Fp) of order r.
Remark: We know that a base point G of order r exists. This is
because #E(Fp) is a finite abelian group and the converse of the La-
grange Theorem applies. The details can be found in Section 3.2
of [5]. Alternatively, in Theorem 5.18, we have seen that E(Fp) ∼=
Zn or Zn1 ⊕ Zn2 and clearly, r divides #E(Fp).

(3) Finally, she chooses a secret integer a and computes Q = aG.

Alice makes the following information public:

• The elliptic curve E
• The finite field Fp

• The group order r
• Points G and Q

While f is not explicitly in the above list, it can be deduced easily from p
and r using elementary methods, Hasse’s theorem, or algorithms like Baby
Step, Giant Step or Schoof’s. The real secret is the a which is difficult to
compute because of the Elliptic Curve Discrete Logarithm Problem.

To sign the message m, Alice does the following:

(1) First, she chooses a random integer k with 1 ≤ k < r and computes
R = kG = (x, y).

(2) Then she computes s = k−1(m+ ax) (mod r).

The signed document that is passed to Bob is (m,R, s).
Finally, to verify the signature, Bob does the following.

(1) He computes u1 = s−1m (mod r) and u2 = s−1x (mod r).
(2) He also computes V = u1G⊕ u2Q.
(3) The signature is declared valid if V = R.
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If the document is signed correctly, this is why verification should work:

V = u1G⊕ u2Q

= s−1mG⊕ s−1xQ

= s−1mG⊕ s−1xaG

= Gs−1(m+ xa)

= Gs−1sk [Note: s = k−1(m+ ax)(mod r)]

= Gk

= R.

The flowchart below summarizes the Elliptic Curve Digital Signature Al-
gorithm. The public information is marked with green while the private
information is marked with red.

E

Fp

#E(Fp) = fr G ∈ E,#G = r

a Q = aG

k R = kG = (x, y)

m s = k−1(m + ax)

(m,R, s)

m,R, s

Signed Document

Transmission (insecure)

Fp, E, r,G,Q

V = s−1(mG + xQ)

Is V=R?

Signature Invalid Signature Valid

Yes

No

Example 5.39. We will construct a simple example of the Elliptic Curve
Digital Signature Algorithm. In our previous example, we used the curve
Y 2 = X3 + 4X + 1 over F5 and calculated #E(F5) = 8. Since 8 = 23 is a
product of the smallest prime, we will use a different field with a group order
of points that is relatively large. Let us consider Y 2 = X3 + 4X + 1 over
F7. Following procedure in Example 5.8, we can find the points in the curve:
E(F7) = {O, (0, 1), (0, 6), (4, 2), (4, 5)}. We also find that #E(F7) = 5 which
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is prime. In our case, f = 1 and r = 5. Below we will also construct an
addition table to help in our calculations but note that this addition table
is difficult to generate for cryptography in real world where large primes are
used.

+ O (0, 1) (0, 6) (4, 2) (4, 5)

O O (0, 1) (0, 6) (4, 2) (4, 5)
(0, 1) (0, 1) (4, 5) O (0, 6) (4, 2)
(0, 6) (0, 6) O (4, 2) (4, 5) (0, 1)
(4, 2) (4, 2) (0, 6) (4, 5) (0, 1) O
(4, 5) (4, 5) (4, 2) (0, 1) O (0, 6)

Now suppose Alice chooses a base point G = (0, 1) on E(F5). The order
of (0, 1) is r = 5. Also suppose Alice chooses a secret integer a = 3. Now,
she computes Q = 3 · (0, 1) = (4, 2).

Following information is made public:

• The curve Y 2 = X3 + 4X + 1.
• The field F7.
• The group order r = 5.
• Points (0, 1) and (4, 2).

Because of the discrete logarithm problem, it is assumed that finding a when
given (0, 1) and (4, 2) is hard.

To sign the message m = 9, Alice does the following:

(1) For a random integer 1 ≤ k < r = 5, say she chooses k = 2.

R = 2 · (0, 1) = (4, 5).

Thus, x = 4, y = 5
(2) Computes s as

s = 2−1(9 + 3 · 4) (mod 5)

= 2−1 · 1 (mod 5)

= 3

The signed document passed to Bob is

(m = 9, R = (4, 5), s = 3).

Bob can verify the signature as follows:
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(1) He computes:

u1 = 3−1 · 9 (mod 5)

= 2 · 9 (mod 5)

= 3

u2 = 3−1 · 4 (mod 5)

= 2 · 4 (mod 5)

= 3

(2) Now he computes V as:

V = u1G+ u2Q

= 3 · (0, 1) + 3 · (4, 2)
= (4, 2) + (0, 6)

= (4, 5)

(3) Clearly V = R = (4, 5) and the signature is declared valid.

The example above was fairly simple as we used a small prime p. In order
to leave the readers with a taste of how this is actually applied in real world,
we will look at an example below.

5.3.3. Example: secp256k1. One fascinating application of the Elliptic Curve
Digital Signature Algorithm, as mentioned in Section 8.8 of [10], is imple-
menting blind digital signatures where the document to be signed is first
concealed and then signed, yet the signature can be verified against the orig-
inal unblinded document. Blind digital signatures can be implemented for
digital cash whose payments are verifiable but untraceable as explained in
[2]. An example of a popular digital cash mechanism is Bitcoin which uses
a 256-bit elliptic curve domain parameters over Fp where p = 2256 − 232 −
29 − 28 − 27 − 26 − 24 − 1. From [13], we specify this elliptic curve domain
parameter called secp256k1.

The elliptic curve is given by E : y2 = x3 + 7.
It might help to know actually how large the prime p is. We use [8] to

calculate 2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1 as

p =115792089237316195423570985008687907853

269984665640564039457584007908834671663

We will look at the base point G in its compressed form below. By com-
pressed form, we mean the X-coordinate of G. Note that this specification
lists the coordinates in hexadecimal number system.

G = 02 79BE667E F9DCBBAC 55A06295 CE870B07

029BFCDB 2DCE28D9 59F2815B 16F81798
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The above hexadecimal is equal to the decimal number below. For all large
hexadecimal to decimal conversions, we use the calculator specified in [8].

xG =5506626302227734366957871889516853432625

0603453777594175500187360389116729240

We could have substituted xG into the curve to find yG, but the specifi-
cation conveniently also provides the base point G in uncompressed form, in
other words, both X and Y-coordinates.

G = 04 79BE667E F9DCBBAC 55A06295 CE870B07

029BFCDB 2DCE28D9 59F2815B 16F81798

483ADA77 26A3C465 5DA4FBFC 0E1108A8

FD17B448 A6855419 9C47D08F FB10D4B8

In decimal, the Y-coordinate translates to

yG =326705100207588169780830851305070431844

71273380659243275938904335757337482424.

The order r of G is:

r =FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE

BAAEDCE6 AF48A03B BFD25E8C D0364141

In decimal, this translates to

r =115792089237316195423570985008687907852

837564279074904382605163141518161494337.

The cofactor f = 1.
As we see above, the prime p used is roughly 2256. This suggests that even

using the fastest algorithm that we currently have will take 2128 steps to
solve this digital signature scheme. Recall that this was similar for AES-128
as well. There are 2128 possible keys and if someone wanted to brute force
the key, they would have to perform at least 2128 operations. According to
[17], the fastest supercomputer can perform 1 Exaflop (260) operations in a
second. For 2128 steps, that translates to 268 seconds. This is equivalent to
approximately 9 trillion years!
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6. Conclusion

To sum up, finite fields are abstract mathematical structures following
certain properties that allows us to nicely perform arithmetic within them.
Cryptography, on the other hand, is a very applied methodology to share
information over an insecure channel while ensuring confidentiality and au-
thentication. Based on the whether same keys are used for encryption and de-
cryption, cryptography is classified into private-key (symmetric) and public-
key (asymmetric) cryptosystems. As an example for private-key cryptogra-
phy, we studied Advanced Encryption Standard (AES) which used arithmetic
within finite field GF(28). In the last chapter, we studied the mathematics
behind elliptic curves and used elliptic curves over finite fields to set up El-
liptic Curve Digital Signature Algorithm (ECDSA), a widely used public-key
cryptosystem for verifying the source of information. We conclude that finite
field arithmetic has remarkable applications in both private and public key
cryptosystems and serve practical needs of information security in modern
world.
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